



#### **KTM SCALARIS In-line Density Meter**



#### **PURPOSE**:

Liquids density and temperature measurement with capability to indicate mass flow rate, mass, volumetric flow rate and volume.

#### **ADVANTAGES:**

- Metrologically supported measurement of medium parameters with a density of up to 2000 kg/m³ with the feature of temperature and pressure compensation;
- Medium flow rate measurement channel with an error of ±1%;
- Option of primary and/or periodic verification of the density measurement channel only (if so desired by a customer);
- The maximum temperature of the measured medium up to +400°C.;
- The maximum pressure of the measured medium up to 30 MPa;
- In-service life of 20 years.



KTM SCALARIS / 3





DENSITY METERS WITH NOMINAL DIAMETERS OF 25, 50 MM ARE MANUFACTURED AT IN-HOUSE FULL-CYCLE PRODUCTION FACILITY







### KTM SCALARIS / 4 PETROLEUM PRODUCT QUALITY CONTROL AT SHIPMENT TO A CUSTOMER



High accuracy of the density measurement by KTM SCALARIS up to ± 0.2 kg/m³ enables quality control of the operating medium during fiscal metering. The built-in density correction function for changes in temperature and pressure enables to maintain accuracy during changes in the processing procedure parameters.







A wide range of output interfaces enables to integrate the KTM SCALARIS density transducer into the mixing system in order to control the finished mixture quality.



### KTM SCALARIS / 6 HIGH TEMPERATURE DESIGN OPTION UP TO +350°C/+400°C OPERATING PRESSURE UP TO 30 MPA



Measuring the operating medium density with a temperature up to +350 °C/+400°C enables to use KTM SCALARIS in various industries:

- For measuring the density of high-temperature media such as tar, bitumen;
- For measuring liquid density during hydrogen cracking;
- For pipelines with regular steam purging.





# BUILT-IN TEMPERATURE DENSITY CORRECTION FUNCTION



**Dynamic compensation** of density readings depending on **temperature** (built-in thermal temperature sensing element) enables to maintain the device accuracy when the operating medium temperature changes.



$$A = \frac{Q \cdot \delta_1 \cdot n}{100}$$

where *Q* is the current flow rate in the pipeline;

 $\delta_1$ - Additional error without temperature compensation (±0.3 kg/m³ per every 10 °C);

n = 24.365 = 8760 – The number of hours per year.

| Temperature                           | Absolute error<br>without<br>temperature<br>compensation | Nominal<br>density | Density<br>without<br>temperature<br>compensation | Calculated mass<br>flow rate at the<br>volumetric flow rate<br>of 100 m³/h without<br>temperature<br>compensation | Absolute error of<br>the mass flow rate<br>without<br>temperature<br>compensation | Accumulated error over a year of use without temperature compensation |
|---------------------------------------|----------------------------------------------------------|--------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| +20 °C<br>(laboratory<br>environment) | ±0.2 kg/m³                                               | 850 kg/m³          | 850 kg/m³                                         | 85,000 kg/hour                                                                                                    | ±540 kg/hour                                                                      | 4,730 tons                                                            |
| +200 °C                               | ±5.6 kg/m³                                               |                    | 855.4 kg/m³                                       | 85,540 kg/hour                                                                                                    |                                                                                   |                                                                       |





Excessive pressure leads to the change in the oscillating system rigidity and the oscillation frequency shift and, as a result, the measured density shift. The correction function enables to maintain the device accuracy when operating medium pressure changes.



| Pressure                               | Absolute error<br>without<br>pressure<br>compensation | Nominal<br>density | Density<br>without<br>pressure<br>compensation | Calculated mass flow<br>rate at the volumetric<br>flow rate of 100 m³/h<br>without pressure<br>compensation | Absolute error<br>without<br>pressure<br>compensation | Accumulated error over a year of use without pressure compensation |
|----------------------------------------|-------------------------------------------------------|--------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|
| 0.1 MPa<br>(laboratory<br>environment) | ±0.2 kg/m³                                            | 850 kg/m³          | 850 kg/m³                                      | 85,000 kg/hour                                                                                              | ±47 kg/hour                                           | 411 tons                                                           |
| 10 MPa                                 | ±0.47 kg/m³                                           |                    | 850.47 kg/m³                                   | 85,047 kg/hour                                                                                              |                                                       |                                                                    |



where Q is the current flow rate in the pipeline;

 $\delta_1$  - Additional error without pressure compensation (± 0.047 kg/m³ per every 1 MPa);

n = 24.365 = 8760 – The number of hours per year.



# MEDIUM FLOW RATE MEASUREMENT CHANNEL WITH AN ERROR OF ±1%;



At a customer's request, it is possible to manufacture KTM SCALARIS density meter with a flow rate indication function for monitoring the operating medium sampling.





## THANK YOU FOR YOUR ATTENTION!



"NPP KuibyshevTelecom-Metrologiya" LLC the city of Samara, Volzhsky urban-type settlement



**+**7 (846) 202-00-65



info@ktkprom.com