Общество с ограниченной ответственностью «НПП КуйбышевТелеком-Метрология»

26.51.52.110

(код продукции)

Утверждён РМТВ.26.000.00.0000.000РЭ-ЛУ

Расходомер-счетчик жидкости ультразвуковой УЗС-1М

Руководство по эксплуатации РМТВ.26.000.00.00000.000РЭ

Оглавление

1 Описание и работа	4
1.1 Назначение изделия	4
1.2 Технические характеристики УЗС-1М	5
1.3 Конструкция фланцев	9
1.4 Состав изделия	9
1.5 Выходные сигналы	22
1.6 Диагностика и индикация состояния (NAMUR NE107)	24
1.7 Обеспечение взрывобезопасности	25
1.8 Устройство и работа УЗС-1М	28
1.9 Маркировка и пломбирование	
1.10 Упаковка	33
2 Использование по назначению	35
2.1 Рабочие условия эксплуатации	
2.2 Эксплуатационные ограничения	35
2.3 Требования к электромонтажу во взрывоопасной зоне	40
2.4 Подготовка УЗС-1М к использованию	40
2.5 Использование УЗС-1М	
2.6 Требования к теплоизоляции	49
3 Техническое обслуживание	
3.1 Проверка технического состояния	
3.2 Поверка	51
4 Текущий ремонт	
4.1 Допуск персонала к ремонту	52
4.2 Замена ПП	52
4.3 Замена элемента питания часов реального времени.	62
4.4 Перечень неисправностей	63
5 Хранение и утилизация	64
5.1 Условия хранения	
5.2 Утилизация УЗС-1М	64
6 Транспортирование	65
Приложение А (справочное) Опросный лист УЗС-1М	66
Приложение Б (справочное) Габаритные размеры УЗС-1М	69
Приложение В (справочное) Чертежи средств взрывозащиты	71
При домения Г. (аправанная) Суми и эдомериномина намрабозанами и нанай	. 72

Настоящее руководство по эксплуатации (далее по тексту РЭ) распространяется на расходомер-счетчик ультразвуковой жидкости УЗС-1М (далее по тексту УЗС-1М) и содержит:

- сведения о конструкции, принципе действия, технических характеристиках УЗС-1М и его составных частей;
- указания, необходимые для правильной и безопасной эксплуатации УЗС-1М (использования по назначению, монтажа, технического обслуживания, хранения и транспортирования) и оценок его технического состояния, при определении необходимости отправки в ремонт;
 - сведения по утилизации УЗС-1М и его составных частей.

Эксплуатация УЗС-1М должна производиться только квалифицированными специалистами, изучившими настоящий документ, знающими схему и назначение всех составных частей УЗС-1М, трубопроводной арматуры, контрольно-измерительных приборов и средств автоматики, имеющими соответствующие знания, методы и приёмы безопасной работы в соответствии с утверждённой на предприятии потребителя документацией.

ВАЖНО! Перед началом работ необходимо внимательно изучить данное руководство по эксплуатации.

В настоящем документе применены следующие обозначения и сокращения:

БОИ – блок обработки информации;

Корпус измерительный (КИ) – отрезок трубы с фланцами или без них, предназначенный для монтажа в имеющийся трубопровод, оснащенный фланцами, с патрубками для установки приемопередающих датчиков;

ПО – программное обеспечение;

ПП – приемопередатчик;

DN – условный диаметр (номинальный размер) трубопровода;

Omin – значения минимального расхода, $M^3/4$;

 \mathbf{Qt} – значения переходного расхода, м³/ч;

Отах — значения максимального расхода, $M^3/4$;

Vmin – минимальное значение скорости потока, м/с;

Vt – значение переходной скорости потока, м/с;

Vmax – максимальное значение скорости потока, м/с.

- 1 Описание и работа
- 1.1 Назначение изделия
- 1.1.1 УЗС-1М предназначен для измерений скорости звука, скорости потока жидкости, вычисления объема и объемного расхода жидкости при рабочих условиях и использования в качестве самостоятельного прибора или в составе измерительных систем коммерческого или технологического учета.
 - 1.1.2 УЗС-1М осуществляет следующие функции:
- автоматический сбор и обработку сигналов, поступающих от всех измерительных преобразователей;
- автоматическое вычисление скорости звука, скорости жидкости и акустической температуры;
- автоматическое определение объемного расхода и количества жидкости в рабочих условиях;
 - автоматический учет объемного расхода и количества жидкости в рабочих условиях;
 - автоматическая регистрация измерительной и технологической информации;
- формирование и хранение архивов результатов измерений за отдельные периоды (час, сутки, месяц, год, настраиваемые текущие и накопительные);
- автоматическое обнаружение отказов технических и программных средств, нарушений измерительных каналов с функцией сигнализации о найденных отклонениях оператору;
- автоматическая регистрация отклонений от заданных режимов работы, распознавание аварийных ситуаций;
 - ведение журнала аварийных и технологических сообщений;
- представление визуальной информации о значениях измеряемых параметров, состоянии УЗС-1М на дисплеях блока обработки информации;
- взаимодействие с компьютером и другими устройствами для отображения и управления с целью индикации информации на экранах этих устройств и дистанционного управления работой УЗС-1М;
- защита информации от несанкционированного вмешательства и ошибочных действий персонала через систему паролей;
 - возможность замены и добавления приёмопередатчиков (опционально).
- 1.1.3 В качестве измеряемой среды УЗС-1М может выступать нефть и нефтепродукты, вода, неагрессивные и агрессивные жидкости и сжиженный газ.
- 1.1.4 УЗС-1М может эксплуатироваться в взрывоопасной зоне 1 или 2 в соответствии с маркировкой взрывозащиты: 1Ex db e ia [ia Ga] IIC T6...T1 Gb X, либо вне взрывоопасной зоны в соответствии с установленными техническими характеристиками.
- 1.1.5 Клеммная коробка для подключения внешних устройств расположена в клеммном отсеке (Ех е) взрывозащищенной оболочки.
- 1.1.6 Форма опросного листа и структура условного обозначения УЗС-1М показаны в приложении A.

1.1.6.1 Пример условного обозначения УЗС-1М при заказе:

Y3C-1M.11.t3.V1.B6.P2.1B.I1.A.K.I.1X.0.Ex:

- У3C-1M;
- модель с 1 КИ, 1 ПП;
- температурное исполнение от минус 200 °C до плюс 180 °C;
- для работы с максимальной вязкостью измеряемой среды до 300 сСт;
- DN 200;
- для давления жидкости Р2 МПа;
- с фланцами исполнения В по ГОСТ 33259;
- тип интерфейса RS485, 4-20 мA+HART Master, Impulse;
- материал KИ 12X18H10T;
- компактная версия;
- с индикацией;
- с модулем выносным;
- без устройства обогрева для БОИ;
- взрывозащищенного исполнения.
- 1.2 Технические характеристики УЗС-1М
- 1.2.1 Метрологические характеристики УЗС-1М
- 1.2.1.1 Основные метрологические характеристики УЗС-1М приведены в таблинах Таблина 1-4.

Таблица 1 – Метрологические характеристики УЗС-1М

Наименование параметра	Значение параметра
Пределы допускаемой относительной погрешности токового выхода, %	±0,025
Пределы допускаемой относительной погрешности токового входа, %	±0,025
Пределы допускаемой абсолютной погрешности импульсного выхода, имп.	±1
Пределы допускаемой относительной погрешности частотного выхода, %	±0,02
Температурный дрейф токового выхода, мкА	±0,25/°C
Погрешность измерения температуры, %	0,5

Таблица 2 – Метрологические характеристики V3C-1M модель 11 (1 луч)

таолица 2 – Метрологические характеристики 3 36-ты модель тт (т луч)	
Наименование параметра	Значение параметра
Пределы допускаемой относительной погрешности измерений объёмного расхода и	
объёма при поверке на РПУ, %	
- при скорости ³⁾ потока от 0,5 м/с (включительно) до Vmax м/с	± 1 ;
- при скорости ³⁾ потока от Vmin до 0,5 м/с	$\pm (0.8 \pm 0.5/V^{2)}$
Пределы допускаемой относительной погрешности измерений объёмного расхода и	
объёма при поверке имитационным методом, %	
- при скорости ³⁾ потока от 0,5 м/с (включительно) до Vmax м/с	\pm 1,2;
- при скорости ³⁾ потока от Vmin до 0,5 м/с	$\pm (1,3+0,6/V^{2)}$
Пределы допускаемой относительной погрешности измерений объёмного расхода и	
объёма при поверке геометрическим методом, %	
- при скорости ³⁾ потока от 0,5 м/с (включительно) до Vmax м/с	\pm 1,5;
- при скорости ³⁾ потока от Vmin до 0,5 м/с	$\pm 1,5; \\ \pm (1,5+0,8/V^2)$
Примечания	
1 V — скорость потока в м/с.	

- 2 Значения Vmin, Vmax, указаны в ПС для конкретного диаметра и исполнения.

Таблица 3 – Метрологические характеристики УЗС-1М модель 21 (2 луча)

1 1	
Наименование параметра	Значение параметра
Пределы допускаемой относительной погрешности измерений объёмного расхода и	
объёма при поверке на РПУ, %	
- при скорости ³⁾ потока от 0,5 м/с (включительно) до Vmax м/с	$\pm 0,5$
- при скорости ³⁾ потока от Vmin до 0,5 м/с	$\pm (0,5+0,4/V^{2)})$
Пределы допускаемой относительной погрешности измерений объёмного расхода и	
объёма при поверке имитационным методом, %	
- при скорости ³⁾ потока от 0,5 м/с (включительно) до Vmax м/с	$\pm 0,6$
- при скорости ³⁾ потока от Vmin до 0,5 м/с	$\pm (0,6+0,5/V^{2)}$
Пределы допускаемой относительной погрешности измерений объёмного расхода и	
объёма при поверке геометрическим методом, %	
- при скорости ³⁾ потока от 0,5 м/с (включительно) до Vmax м/с	$\pm 0,7$
- при скорости ³⁾ потока от Vmin до 0,5 м/с	$\pm 0.7 \pm (0.7 + 0.6/V^{2)}$
Примечания	
1 V – скорость потока в м/с.	
2 Значения Vmin, Vmax, указаны в ПС для конкретного диаметра и исполнения.	

Таблица 4 - Метрологические характеристики УЗС-1М модель 31 (3 луча)

Наименование параметра	Значение параметра	
Пределы допускаемой относительной погрешности измерений объёмного расхода и		
объёма при поверке на РПУ, %		
- при скорости ³⁾ потока от 0,5м/с (включительно) до Vmax м/с	$\pm 0,28^{3)}$	
- при скорости ³⁾ потока от Vmin до 0,5 м/с	$\pm (0,28+0,12/V^{2)})$	
Пределы допускаемой относительной погрешности измерений объёмного расхода и		
объёма при поверке имитационным методом, %		
- при скорости ³⁾ потока от 0,5 м/с (включительно) до Vmax м/с	$\pm 0,4$	
- при скорости ³⁾ потока от Vmin до 0,5 м/с	$\pm (0,4+0,2/V^{2)})$	
Пределы допускаемой относительной погрешности измерений объёмного расхода и		
объёма при поверке геометрическим методом, %		
- при скорости ³⁾ потока от 0,5 м/с (включительно) до Vmax м/с	$\pm 0,6$	
- при скорости ³⁾ потока от Vmin до 0,5 м/с	$\pm (0,6+0,3/V^{2)})$	

Примечания

- 1 V -скорость потока в м/с.
- 2 Значения Vmin, Vmax, указаны в ПС для конкретного диаметра и исполнения.
- 3 При подключении датчика давления и температуры для компенсации по давлению и температуре среды.

Пределы допускаемой относительной погрешности системы обработки измерительной информации и реализации алгоритмов вычислений, в том числе массы и массового расхода при подключении поточного плотномера или ввода фиксированного значения плотности, а также датчиков (преобразователей) температуры и давления, БОИ УЗС- $1M \pm 0.005$ %.

При заказе УЗС-1М следует выбирать значения расходов Qmin и, исходя из значений, указанных в таблице 5. При этом УЗС-1М может быть настроен на максимальный расход Qmax в диапазоне расходов от 0.1*Qmax до Qmax.

Таблица 5 – Диаметры условного прохода и диапазоны измерений УЗС-1М

Ц иаметр условного	$ m Pacxoд, m^3/q$		
прохода, DN	Qmin	Qmax	
8	0,0054	3,62	
10	0,0085	5,65	
12	0,0122	8,14	
15	0,0191	12,72	
20	0,0339	22,62	
25	0,05301	35,34	
32	0,0869	57,91	
40	0,136	90,48	
50	0,212	141,37	
65	0,358	238,92	
80	0,543	361,91	
100	0,848	565,49	
125	1,325	883,6	
150	1,909	1272,3	
200	3,393	2261,9	
250	5,301	3534,3	
300	7,634	5089,4	
350	10,391	6927,2	
400 450 500	13,57	9047,8	
	17,18	11451,1	
	21,21	14137,2	
600	30,54	20357,5	
700	41,56	27708,8	
800	54,29	36191,1	
900	68,71	45804,4	
1000	84,82	56548,7	
1200	122,15	81430,1	
1400	166,25	110835,4	
1600	217,15	144764,6	
1800	274,83	183217,7	
2000	339,29	226194,7	
2200	410,54	273695,6	
2400	488,58	325720,3	
2600	573,4	382269	
2800	665,01	443341,6	
3000	763,41	508938	

Примечания:

^{1.} УЗС-1М для трубопроводов с условным диаметром DN от 8 до 1400 мм поставляется в комплекте с КИ. Данный вариант предусматривает поверку УЗС-1М с помощью расходомерной поверочной установки (РПУ) или (при отсутствии РПУ) для DN от 50 до 3000 мм поверку геометрическим методом или имитационной методом.

^{2.} УЗС-1М для трубопроводов с условным диаметром более 100 мм может поставляется в виде монтажного комплекта. Данный вариант предусматривает монтаж ПП непосредственно на трубопроводе и поверку УЗС-1М геометрическим методом или имитационным методом.

^{3.} Qmin и Qmax – значения минимального и максимального расхода.

1.2.2 Основные технические характеристики УЗС-1М приведены в таблице 6.

Таблица 6 – Технические характеристики УЗС-1М

Taosinga o Texim leekne kapaktephetikii 5 50	
Наименование характеристики	Диапазон значений
Номинальный диаметр прохода (DN), мм	81400 (с измерительным участком) 1003000 (монтажный комплект без ИУ)
Количество измерительных лучей, шт.	1, 2, 3
Диапазон измерений объёмного расхода жидкости и объёма жидкости в потоке, м ³ /ч	от 0,0054 до 508938
Диапазон измерения при скорости потока, м/с	±0,03 до ±20
Частота работы ультразвуковых приёмопередатчиков, с	1,5
допустимой погрешностью ±5 %, кГц	2
Допустимое содержание газовых включений (по объему), %	≤3
Допустимое содержание механических примесей в	≤5
жидкости (по объему), %	23
Максимальная вязкость среды, сСт	до 300 до 1000*
	от -40 по +60
Температура эксплуатации БОИ окружающей среды, °С	от -70 до +85**
Температура рабочей среды, °С	от то до тоз
Исполнение t1	-45+450*
Исполнение t2	-45+300*
Исполнение t3	-200+180*
Исполнение t4	- 60+135*
Исполнение t5	- 60+100*
Исполнение t6	- 60+85*
Исполнение t7	-45+550*
Рабочее давление избыточное (PN), МПа:	до 50
Интерфейсы	- RS-485 (с поддержкой Modbus RTU, Modbus ASCII); - Токовая петля входная активная (с поддержкой HART); - Токовая петля выходная пассивная (с поддержкой HART); - Импульсный выход пассивный (с поддержкой NAMUR NE107); - Еthernet (с поддержкой Modbus TCP/IP).
Степень защиты IP по ГОСТ 14254	IP66//IP68
Маркировка взрывозащиты	1Ex db e ia [ia Ga] IIC T6T1 Gb X
Номинальное напряжение питания (постоянного тока),	
B:	24
- минимальное;	12
- максимальное.	30
Диапазон выходного сигнала силы тока постоянного	4 – 20
электрического тока, мА	
Потребляемая мощность, Вт	4
Межповерочный интервал, лет	5
Срок средней наработки на отказ, не менее, ч	120000
Срок службы, лет	15
Температура хранения, °С	-50+70
* - Как дополнительная опция при заказе ** - С применением устройств обогрева или теплово	й изоляции (теомочехла)

- 1.2.3 Габаритные размеры и масса изделий приведены в приложении Б
- 1.3 Конструкция фланцев
- 1.3.1 Конструкция фланцев соответствует стандартам ГОСТ 33259-2015, ASME B16.5 и КД.

Варианты исполнений фланцев соответствуют кодировке, указанной в таблице 7.

Таблица 7 – Кодировка исполнения фланцев УЗС-1М

Наименование стандарта	Обозначение в соответствии со стандартом	Код исполнения фланца при заказе	
	В	1B	
	C	1C	
ГОСТ 33259	D	1D	
1001 33239	E	1E	
	F	1F	
	J	1J	
	В	2B	
	C	2C	
DIN EN1092-1	D	2D	
	Е	2E	
	F	2F	
	RF	RF	
	SM	SM	
	LM	LM	
	SF	SF	
ASME B16.5	LF	LF	
ASME D10.3	ST	ST	
	LT	LT	
	SG	SG	
	LG	LG	
	RJF	RJ	

1.4 Состав изделия

- 1.4.1 УЗС-1М состоят из корпуса измерительного (КИ) с приёмопередатчиками ультразвуковыми (ПП), блока обработки информации (блок БОИ) и модуля выносного (МВ). Корпус измерительный состоит из трубы с фланцами и закрепленными на ней ПП.
- 1.4.2 Количество ПП определяется количеством измерительных лучей. Каждый измерительный луч состоит из пары ПП.
- 1.4.3 УЗС-1М производятся в компактном исполнении (К), когда блок БОИ крепится непосредственно на КИ и в разнесенном исполнении (Р), когда БОИ крепится отдельно от КИ и соединен с ним кабелем длиной до 15 м.

В модификация УЗС-1М – в один КИ встроено одна, две или три пары ультразвуковых приемопередатчиков, и один БОИ.

- 1.4.4 УЗС-1М могут изготавливаться:
- в расширенном температурном исполнении (криогенном, для высоких температур, с устройством обогрева, для стандартного диапазона температур);
 - в исполнении для высоковязких жидкостей;
 - в исполнении для высокого давления измеряемой среды;
- в исполнении, обеспечивающим возможность осуществления демонтажа, технического обслуживания и ремонта ПП без потери герметичности трубопровода и сброса давления.
- 1.4.5 УЗС-1М с КИ присоединяются к трубопроводу с помощью фланцев. Также КИ могут представлять собой трубопровод с приварными патрубками для установки ПП на действующем трубопроводе (исполнение монтажный комплект М) или цельными (литыми или выточенными из куска металла).

В корпусе измерительном могут быть предусмотрены места для крепления съёмника сенсора для извлечения приёмопередатчиков.

1.4.6 КИ могут изготавливаться:

- с ультразвуковым каналом, ориентированным вдоль оси КИ;
- с ультразвуковыми каналами, использующими отражение от внутренней стенки КИ;
- с ультразвуковым каналом, ориентированным под углом к оси КИ;
- с ультразвуковым каналом, расположенным по диаметру трубопровода для контроля отложений;
- с ультразвуковыми каналами, смещенными от оси трубопровода на определенное расстояние, по хорде.
 - 1.4.7 Состав УЗС-1М показан на рисунке 1.

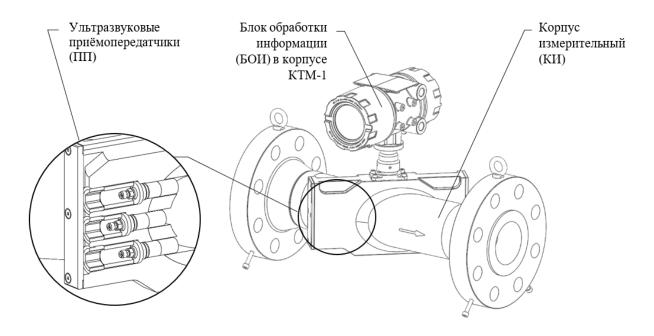


Рисунок 1 – Конструкция УЗС-1М с оболочкой КТМ-1

1.4.8 Модели УЗС-1М

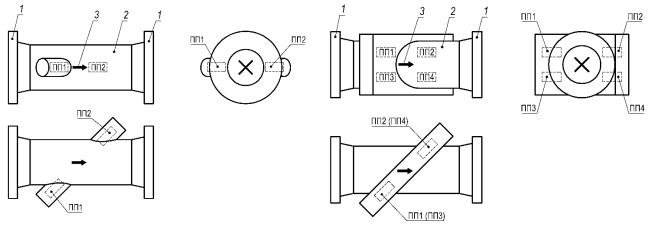

1.4.8.1 УЗС-1М в зависимости от количества ультразвуковых каналов, количества КИ, диаметра трубопровода и уровня точности измерений подразделяется на модели, показанные в таблице 8.

Таблица 8 – Модели УЗС-1М

Модель УЗС-1М	Количество ультразвуковых каналов (лучей)	DN	Количество КИ	Уровень точности
11	1	от 8 до 1400	1	обычный
21	2	от 50 до 1400	1	обычный
31	3	от 100 до 1400	1	повышенный

По конструктивному исполнению УЗС-1М подразделяется на версии:

- «К» компактная версия (блок обработки информации расположен на КИ), применяется для всех моделей;
- «Р» разнесенная версия (блок обработки информации может находиться на расстоянии от КИ), применяется для моделей 11, 21. В комплект поставки входит комплект соединительных кабелей длиной до 15 м;
- «М» разнесенная версия с монтажным комплектом (для установки УЗС-1М на действующем трубопроводе, DN от 150 до 3000). Применяется для модели 11. В комплект поставки входят: патрубки с приёмопередатчиками, комплект соединительных кабелей, БОИ.
- «Д» модификация в один КИ встроено 2 комплекта сенсоров, по две или четыре или шесть пар ультразвуковых приемопередатчиков расположенные по схеме крест и два БОИ.
- 1.4.8.2 УЗС-1М модели 11 имеет КИ с одним ультразвуковым каналом, ориентированным под углом к оси КИ или вдоль оси КИ.
- 1.4.8.3 УЗС-1М модели 21 имеет КИ с двумя ультразвуковыми каналами, расположенными на хордах, смещенных от оси КИ на одинаковое расстояние и ориентированными под одинаковыми углами к оси КИ.
- 1.4.8.4 УЗС-1М модели 31 имеет КИ с тремя ультразвуковыми каналами, расположенными на хордах, смещенных от оси КИ на одинаковое расстояние и ориентированных под одинаковыми углами к оси трубопровода. Третий канал расположен на оси трубопровода и ориентирован под углом к оси КИ.
- 1.4.9 Конструктивное исполнение КИ, расположение ПП на КИ различных моделей УЗС-1М показано на рисунке 2.

Расположение ПП на КИ (УЗС-1М модель 11)

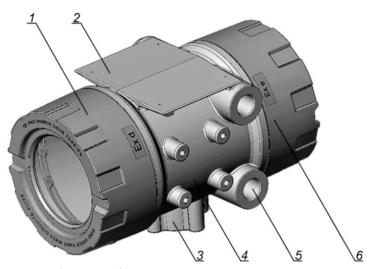
Расположение ПП на КИ (УЗС-1М модель 21)

 $1- \phi$ ланцы; 2-корпус измерительный; 3-направление потока; $\Pi\Pi 1-\Pi\Pi 4-$ приемопередатчики.

Рисунок 2 – Расположение ПП на измерительном участке

- 1.4.9.1 К клеммам в ПП через герметизированный ввод подключаются соединительные кабели, закрываются крышкой и пломбируются.
- 1.4.9.2 Фланцы ИУ выполнены в соответствии с ГОСТ 33259-2015, EN 1092-1, ASME B16.5.

1.4.10 Блок обработки информации


Блок обработки информации (БОИ) содержит электрические и электронные компоненты, необходимые для управления ультразвуковыми приемопередатчиками. Он генерирует сигналы и производит измерение разности времени пролёта сигнала в среде по потоку и против потока, оснащен интерфейсами для связи с ПК и программами и оборудованием верхнего уровня.

Показания счетчиков, журналы событий (ошибки, предупреждения, изменения параметров) и записи архивов сохраняются в постоянной памяти (FRAM) вместе с отметкой времени. При перезагрузке или отключении питания прибора последнее значение показания объема считывается в качестве начального. Резервная память типа FRAM обеспечивает неограниченное количество циклов записи и хранение архивных данных в течение, по меньшей мере, 15 лет.

БОИ состоит из следующих функциональных блоков:

- оболочка взрывозащищенная КТМ-1, приведенная на рисунке 3, предназначенная для размещения электронных компонентов счетчика во взрывоопасной зоне 1 или 2;
- электронные компоненты, размещаемые в взрывозащищенной оболочке: плата блока питания, плата индикации, плата измерителя, плата интерфейсная.

В БОИ реализован функционал вычислителя, который позволяет рассчитать объёмный и массовый расход при постоянной плотности и при подключенном плотномере.

1 -крышка передняя (Ex d отсек); 4 -база;

2 – место маркировки; 5 – разъемы для кабельных вводов (по два с каждой стороны);

3 – шея; 6 –крышка задняя (Ех е отсек);

Рисунок 3 – Состав оболочки взрывозащищенной

Материал оболочки взрывозащищенной – алюминиевый сплав, содержащий по массе не более 7,5% (в сумме) магния, титана и циркония.

В зависимости от требований заказчика в БОИ предусмотрены следующие наборы интерфейсов, приведенные в таблице 9.

Таблица 9 – Варианты интерфейсов БОИ

Варианты	зарианты интерфенеов вогт				
интерфейсов	Входы/выходы				
Вариант №1	- RS485 (ведомый) (клеммник X1 в Ex е отсеке, клеммы 1 - 3);				
	- Токовая петля вход (+HART), активная (клеммник X1 в Ex е отсеке, клеммы 4, 5);				
	- 2 импульсных выхода (клеммник X1 в Ex е отсеке, клеммы 7-10).				
Вариант №2	- RS485 (ведомый) (клеммник X1 в Ex е отсеке, клеммы 1 - 3);				
	- Токовая петля вход (+HART), активная (клеммник X1 в Ex е отсеке, клеммы 5, 6);				
	- Токовая петля выход (+HART), пассивная (клеммник X1 в Ex е отсеке, клеммы 9,				
	10).				
Вариант №3	- RS485 (ведомый) (клеммник X1 в Ex е отсеке, клеммы 1 - 3);				
	- Токовая петля выход (+HART), пассивная (клеммник X1 в Ex е отсеке, клеммы 5,				
	6);				
	- 2 импульсных выхода (клеммник X1 в Ex е отсеке, клеммы 7-10).				
Вариант №4	- Ethernet (ведомый) (клеммник X1 в Ex е отсеке, клеммы 1 - 4);				
	- Токовая петля вход (+HART), активная (клеммник X1 в Ex е отсеке, клеммы 5, 6);				
	- 2 импульсных выхода (клеммник X1 в Ex е отсеке, клеммы 7 - 10).				
Вариант №5	- Интерфейс RS485 №1 (ведомый) (клеммник X1 в Ex е отсеке клеммы 1, 2);				
	- Интерфейс RS485 №2 (ведомый) (клеммник X1 в Ex е отсеке клеммы 3, 4);				
	- Импульсные выходы (клеммник X1 в Ex е отсеке клеммы 5-10).				
Вариант №7	- RS485 (ведомый) (клеммник X1 в Ex е отсеке, клеммы 1, 2, 3);				
	- Токовая петля вход (+HART), активная (клеммник X1 в Ex е отсеке, клеммы 4, 5);				
	- Токовая петля выход (+HART), пассивная (клеммник X1 в Ex е отсеке, клеммы 6,				
	7);				
	- 2 импульсных выхода (клеммник X1 в Ex е отсеке, клеммы 8 - 10).				
	– При заказе счетчика пользователю необходимо выбрать один из предложенных				
вариантов инте	ерфейсных входов/выходов.				

Внешний вид дисплея БОИ приведен на рисунке 4.

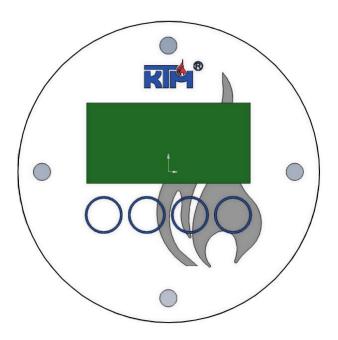


Рисунок 4 –Панель декоративная дисплея БОИ

1.4.10.1 БОИ выполняет следующие функции:

- определяет расход и объем жидкости, сохраняет показания УЗС-1М, журналы событий, ошибки, отметки времени;
- содержит интерфейсы для связи с подключаемыми датчиками, компьютером и стандартизированной системой управления процессом.;
- обеспечивает регистрацию нештатных ситуаций и их хранение в соответствующих журналах событий;
- в автоматическом режиме регулирует усиление ультразвукового сигнала, в зависимости от загрязненности излучающей поверхности приёмопередатчика.

1.4.10.2 Блок обработки информации включает в себя:

- модуль измерителя;
- модуль вычислителя и интерфейсов;
- модуль питания;
- модуль индикации и управления;
- кабельный отсек.

Модуль измерителя осуществляет:

- преобразование информации о скорости течения (расходе) жидкости в трубопроводе в импульсный сигнал с параметрами, пропорциональными скорости течения (расходу) жидкости в каждом канале;
 - формирование сигнала о работоспособности каждого канала УЗС-1М (ОТКАЗ).

Модуль вычислителя осуществляет:

- формирование необходимых напряжений питания;
- формирование информации для модуля индикации и управления (индикация параметров);
- преобразование информации об объеме жидкости, прошедшей через КИ, в импульсный сигнал:
- преобразование информации об объеме жидкости, прошедшей через КИ, в аналоговый сигнал (4-20) мА;
- преобразование информации (значение накопленного объема, текущее значение расхода, время, нештатные ситуации) в стандарт интерфейсов HART и RS-485;
- коррекцию влияния изменения параметров измеряемой жидкости (скорость ультразвука, температура, вязкость) на преобразование скорости течения жидкости в импульсный сигнал;
 - счет времени исправной работы;
- развязку потенциалов выходных сигналов от потенциала корпуса блока обработки информации;
- хранение во внутренней энергонезависимой памяти программы работы процессора и введенных в УЗС-1М настроечных параметров.

Модуль вычислительный на основе данных от измерительного модуля определяет значения объемного расхода в рабочих условиях, скорости жидкости, скорости звука, накопленного объема, формирует и сохраняет архивы результатов измерений и вычислений за установленные отчетные периоды измерений, а также реализовывает алгоритм очередности работы приёмопередатчиков.

Блок питания обеспечивает электропитанием заданных номиналов и уровнем пульсаций все электрические цепи УЗС-1М. Входное напряжение сети электропитания напряжением от 12 до 30 В постоянного тока, используя АС-DC преобразователь стороннего производителя в корпусе искробезопасного исполнения с действующим сертификатом.

Блок управления реализовывает пользовательский интерфейс индикации И взаимодействия с УЗС-1М при помощи дисплея и сенсорных кнопок управления, осуществляет отображение текущих показаний расхода жидкости, параметров измеряемой среды, информационных сообщений, статусного У3С-1М индикацию состояния («ОК» / «ТО» / «Сбой»), объем жидкости, и накопленный объём с нарастающим итогом.

- 1.4.10.3 Блок индикации и управления осуществляет индикацию накопленного объема, времени исправной работы, текущего расхода, программируемых параметров и режимов работы УЗС-1М.
 - 1.4.10.4 Блок обработки информации УЗС-1М может быть изготовлен:
 - с цифровой индикацией данных;
 - без индикации.
- 1.4.10.5 Размещение элементов коммутации, управления и индикации на БОИ представлены на рисунках 5, 6.

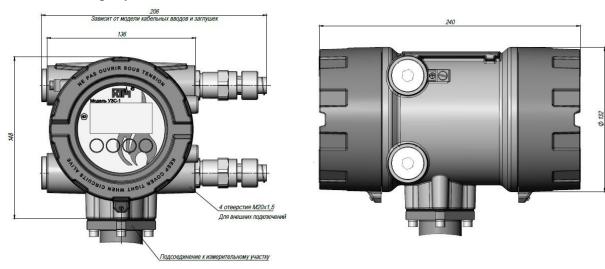


Рисунок 5 – Габаритные размеры БОИ

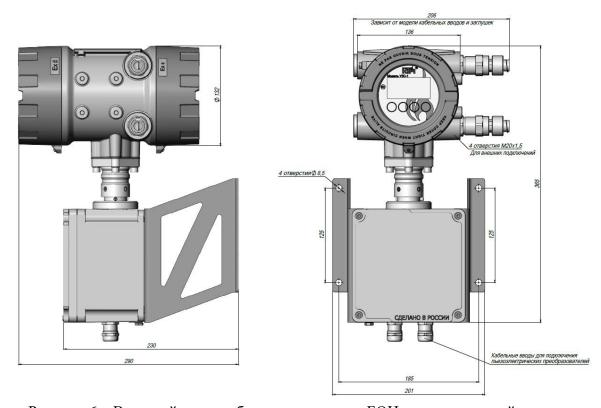


Рисунок 6 – Внешний вид и габаритные размеры БОИ для разнесенной версии

Номера, обозначения, назначение и расположение контактов разъёмов БОИ показаны на рисунке 7.



Рисунок 7 – БОИ, вид со стороны подключения ПП и внешних цепей

1.4.11 MB (рисунок 8) обеспечивает взаимодействие пользователя с блоком обработки информации на расстоянии: производит считывание показаний расхода газа, параметров рабочей среды, информационных сообщений, просмотр индикации статусного состояния счетчика, управление работой счетчика и конфигурирование настроек.

Рисунок 8 – Внешний вид МВ

1.4.11.1 МВ выполняет следующие функции:

- считывание информации с БОИ;
- визуальное представление на дисплее информации о значениях измеряемых параметров, состоянии УЗС-1М на дисплее МВ;
- передача на верхний уровень системы учета значений измеряемых и вычисляемых УЗС-1М параметров;
 - управление работой УЗС-1М;
 - хранение собственной конфигурации;
 - самодиагностика состояния внутренних узлов.
 - 1.4.11.2 Для подключения различных видов оборудования, в составе модуля выносного

применены конверторы интерфейсов, ретрансляторы и блоки искрозащиты (рисунок 9).

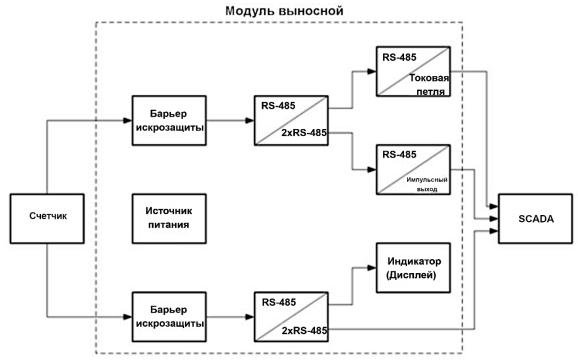


Рисунок 9 – Функциональная схема выносного модуля

1.4.11.3 Состав модуля выносного может отличаться в зависимости от типа питания (постоянное/переменное напряжение), наличия барьеров искробезопасности, наличия GSM антенны (рисунки 10 и 11).

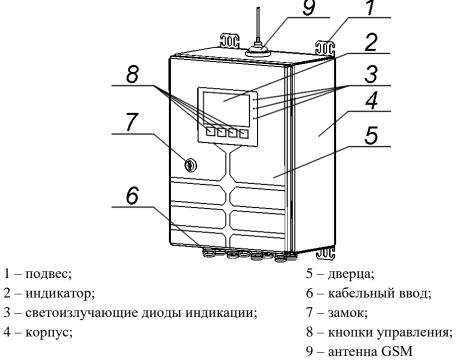



Рисунок 10 – Внешний вид выносного модуля

- 1 клеммы подключения фазного провода внешнего электропитания или плюсового полюса внешнего электропитания;
- 2 разветвители интерфейса RS485;
- 3 барьеры искрозащиты;
- 4 -клеммы питания ± 24 В;
- 5 источники питания;
- 6 маркировка «Опасное напряжение»;
- 7 заглушки ввода кабеля;
- 8 GSM антенна;
- 9 GSM модем;
- 10 индикаторы;

- 11 преобразователи RS485 в токовую петлю;
- 12 преобразователи RS485 в импульсный выход;
- 13 замки;
- 14 болты заземления;
- 15 знак «Земля»;
- 16 заглушки;
- 17 клеммы подключения провода заземления
- внешнего электропитания;
- 18 клеммы подключения нулевого провода
- или минусового полюса внешнего
- электропитания.

Рисунок 11 – Состав выносного модуля

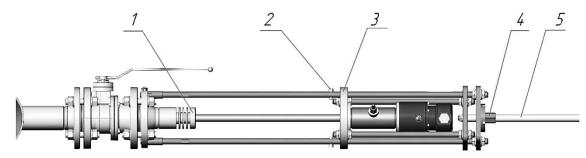
- 1.4.11.4 Модуль выносной содержит следующие интерфейсы связи:
- два цифровых входа RS-485 с поддержкой Modbus RTU для подключения к блоку обработки информации и/или внешнему вычислителю;
- цифровой выход RS-485 с поддержкой Modbus RTU для выдачи значений расхода, накопленного объема в рабочих и стандартных условиях, температуры и давления газа (при наличии соответствующих датчиков, установленных на узле учета), компонентного состава газа, скорости звука и газового потока, статусное состояние счетчика;
- импульсный/цифровой двухканальный выход для вывода измеренных значений: объемного расхода в рабочих условиях, объемного расхода в стандартных условиях, скорости газа, скорости звука, молярной массы, массового расхода, плотности в рабочих условиях, плотности в стандартных условиях, температуры, давления, а также задаваемой пользователем тестовой частоты для проверки импульсного выхода;
- аналоговый конфигурируемый выход (токовая петля 4-20 мА) для выдачи значений расхода, накопленного объема в рабочих и стандартных условиях, температуры и давления газа (при наличии соответствующих датчиков, установленных на узле учета), скорость звука и газового потока.
- 1.4.11.5 Опционально в модуле выносном могут быть установлены дополнительные модули ввода/вывода аналоговых и цифровых сигналов.
- 1.4.11.6 Основные технические характеристики модуля выносного приведены в таблице 10.

Таблица 10 – Технические характеристики модуля выносного

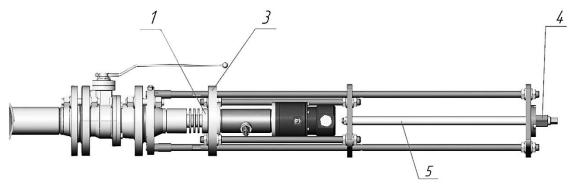
погрешность
С поддержкой
Modbus RTU,
токовая петля
$\pm 0,03 \%$
+5 %; -10 %
±5 %

1.4.11.8 Исполнения МВ показаны в таблице 11.

Таблица 11 – Исполнения модуля выносного


Напряжение питания, В	Модуль GSM (сотовая связь)	Количество барьеров искр	Тип импульсов модификация 1 или 2	Количество разветвителей RS485	Токовая петля 4-20, мА	RS-485
220	-	1	-	1	+	+
24	-	1	-	1	+	+
220	-	2	1	2	+	+
24	-	2	1	2	+	+
220	-	2	2	2	+	+
24	-	2	2	2	+	+
220	+	1	-	1	+	+
24	+	1	-	1	+	+
220	+	2	1	2	+	+
24	+	2	1	2	+	+
220	+	2	2	2	+	+
24	+	2	2	2	+	+
220	-	-	-	1	+	+
24	-	-	-	1	+	+
220	-	-	1	2	+	+
24	-	-	1	2	+	+
220	-	-	2	2	+	+
24	-	-	2	2	+	+
220	+	-	-	1	+	+
24	+	-	-	1	+	+
220	+	-	1	2	+	+
24	+	-	1	2	+	+
220	+	-	2	2	+	+
24	+	-	2	2	+	+

¹⁾ При температуре плюс 35 °C без конденсации влаги 2) Подключение с уровнем искрозащиты «ia» для взрывозащищенного электрооборудования группы II, подгрупп IIC по ГОСТ 31610.11 предназначено для размещения вне взрывоопасной зоны


^{1.4.11.7} МВ применяется в составе прибора коммерческого и некоммерческого учета расхода и объемного расхода жидкости.

1.4.12 Лубрикаторный механизм

1.4.12.1 Лубрикаторный механизм (рисунки 12 и 13) входит в комплект поставки УЗС-1М (монтажный комплект). И предназначен для монтажа ПП в рабочее положение и демонтажа.

1 – Фланец установочный; 2 – Винт М8; 3 – Фланец плоский; 4 – Гайка; 5 — Винт ходовой. Рисунок 12 – Лубрикаторный механизм (монтажное положение)

1 — Фланец установочный; 3 — Фланец плоский; 4 — Гайка; 5 — Винт ходовой. Рисунок 13 — Лубрикаторный механизм (в рабочем положении)

- 1.4.13 Для теплоизоляции составных частей прибора УЗС-1М возможно применение следующих вариантов термочехлов и теплоизоляции:
 - термочехол с электрообогревом для БОИ;
 - термочехол без электрообогрева для БОИ;
 - термочехол корпуса измерительного;
 - термочехол для корпуса измерительного высокотемпературного исполнения;
- другие варианты теплоизоляции, выполненные в соответствии с требованиями раздела 2.6 настоящего руководства по эксплуатации.
- 1.4.13.1 Устройство для обогрева (термочехол с электрообогревом) теплоизоляционное устройство для:
- обеспечения работоспособности прибора УЗС-1М при низких отрицательных температурах;
- поддержания требуемой температуры воздуха внутри или на поверхности изолируемого объекта (в зависимости от выбора мощности электрообогрева);
 - упрощения обслуживания оборудования.
 - 1.4.13.2 Термочехол высокотемпературного исполнения предназначен для:
 - защиты частей прибора от воздействия высоких температур;
 - защиты персонала от воздействия высоких температур технологического процесса;
 - повышения энергоэффективности систем.
 - 1.4.13.3 Термочехол без обогрева предназначен для:
 - сохранение температуры;
 - защиты от внешних температур.

Внешний слой термочехла изготовлен из износо-химически стойкого, водо-масло отталкивающего материала. Теплоизоляционный слой состоит из вспененного синтетического материала толщиной 20...25 мм.

1.4.13.4 Варианты исполнения термочехлов с электробогревом серии Ризур выполняется по индивидуальным размерам в соответствии с конструкцией УЗС-1М. Примеры термочехлов с электробогревом показаны на рисунках 14 и 15.

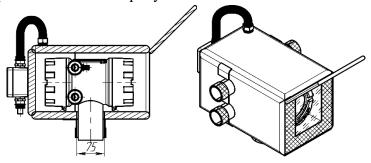


Рисунок 14 – Пример исполнений термочехла с электробогревом БОИ

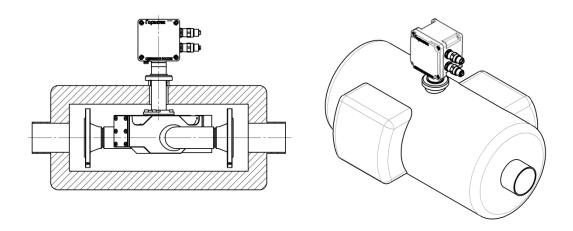


Рисунок 15 – Пример исполнений теплоизоляционный чехол КИ

1.4.13.5 Основные характеристики теплоизоляционного чехла серии VoltermClick перечислены в таблице 12.

Таблица 12 – Основные характеристики термочехла серии VoltermClick

Наименование характеристики	Значение		
Температура окружающей среды при эксплуатации, °С	от - 70 до + 40		
Рабочая температура оболочки, °С	от -70 +95*		
Климатическое исполнение по ГОСТ 15150-69	УХЛ1		
Класс защиты по электробезопасности (с установленным электрообогревом) по ГОСТ 12.2.007.0-75	Ι		
Материал верхнего наружного слоя	Стеклоткань с силиконовым покрытием		
*Термочехлы на другие температуры изготавливаются по согласованию с производителем.			

1.4.13.6 Уровень взрывозащищенности элементов электрообогрева подтверждается действующими сертификатами соответствия ТР ТС 012/2011. Маркировка взрывозащиты электрообогрева, распределительной коробки и регулятора температуры (при их наличии) отображается на типовой табличке термочехла.

1.4.13.7 Подключение электрообогрева осуществлять в соответствии с Руководством по

эксплуатации на термочехол.

- 1.4.13.8 Допускается применять другие варианты теплоизоляции, при этом необходимо руководствоваться требованиями, указанными в п.2.6 настоящего руководства по эксплуатации.
 - 1.5 Выходные сигналы
- 1.5.1 Импульсно-частотный выход сигнал в виде замыкания цепи клемм "Fout+" и "Fout-" блока обработки информации оптоэлектронным ключом.

Электрические параметры выхода:

- коммутируемое напряжение не более 30 В постоянного тока;
- ток через ключ не более 24 мА;
- выходное напряжение при токе через ключ 24 мА -не более 1,5 В;
- ток утечки при U = 30 B не более 0.1 мA.

На импульсно-частотном выходе формируются сигналы (по выбору в меню):

- импульсный сигнал формы "меандр" с частотой, пропорциональной расходу (частота, соответствующая максимальному расходу Отах, равна 10000 Гц);
- импульсный сигнал в соответствии с коэффициентом "В" (минимальная длительность импульсов 0.1 мс);
 - импульсы времени 1 с.
- 1.5.2 Токовый выход (клеммы "+Iout" и "-Iout") аналоговый сигнал (4 20) мА с диагностикой по стандарту NAMUR NE43. Границы диагностики (рисунок 16):

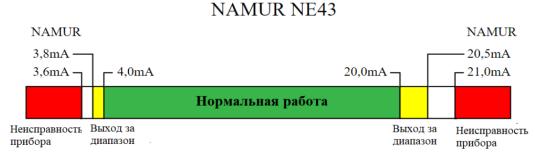


Рисунок 16 – Границы диагностики по стандарту NAMUR NE43

Основные уровни сигнализации по NAMUR NE43 приведены в таблице 13: Таблица 13 — Описание сигнализации по NAMUR NE43

Диапазон, мА	Значение
3,2-3,6	Когда значение тока находится в диапазоне 3,2-3,6 мА, это указывает на
	ошибку инициализации токовой петли.
21-24	• Когда значение тока находится в диапазоне 21-24 мА, это сигнализирует о
	критической ошибке в счетчике.
	• Для получения дополнительной информации необходимо подключиться
	через программное обеспечение SmartStream и проверить статусы состояния
	счетчика.
4 - 20	В нормальных условиях ток должен находиться в пределах 4-20 мА. Любые
	отклонения от этого диапазона означают, что счетчик работает некорректно
3,8-4,0	Если значение тока оказывается в диапазоне от 3,8-4,0 мА, это служит
	предупреждением о том, что измеряемый параметр выходит за нижний предел
	допустимого диапазона
20,0-20,5	При значении тока в диапазоне 20,0-20,5 мА, счетчик выдает предупреждение
	о превышении верхнего диапазона измерений

ВНИМАНИЕ! Для взрывозащищенного исполнения используется только с применением взрывобезопасных подключаемых к УЗС-1М устройств.

Питание выходных цепей токового выхода осуществляется от внешнего источника питания с незаземленными клеммами питания.

- 1.5.3 Интерфейсный выход HART для подключения УЗС-1М к средствам контроля и управления предприятия, имеющего соответствующее оборудование.
- 1.5.4 Интерфейсный выход RS -485 для подключения УЗС-1М к компьютеру (расстояние до 1 км).

ВНИМАНИЕ! Для взрывозащищенного исполнения используется только с применением взрывобезопасных подключаемых к УЗС-1М устройств.

Примечание - Разность потенциалов между корпусом блока обработки информации и внешними нагрузками, подключаемыми к клеммам "Fout+" и "Fout-", клеммам "+Iout" и "-Iout", клеммам RS-485 блока обработки информации, не должна превышать 30 В.

- 1.5.5 Параметры сигналов на выходах искробезопасных цепей УЗС-1М
- 1.5.5.1 Клеммы Р блока обработки информации (разнесенная версия):
 - форма сигнала импульсы отрицательной полярности;
 - амплитуда ($\pm 12 \pm 1,5$) В;
 - длительность (0.35 ± 0.1) мкс;
 - скважность не менее 300;
 - сопротивление нагрузки 50 Ом;
- линия связи блока обработки информации и ПП (для разнесенной версии) коаксиальный кабель RG316/U, RG58 или PK50-2-13, ГОСТ 11326.15 или PK50-2-21 ГОСТ 11326.35 с длиной до 15 м.
- 1.5.5.2 Клеммы "Iout +" и "Iout -" пассивный выход. Напряжение питания на выходные цепи токового выхода подается со стороны нагрузки.

ВНИМАНИЕ! Во взрывозащищенном исполнении подключение к токовому выходу осуществляется через сертифицированный барьер взрывозащиты, имеющий на выходе искробезопасной цепи напряжение для питания выходных цепей токового выхода.

1.5.5.3 Клеммы "Fout1+" и "Fout1-", "Fout2+" и "Fout2-" – пассивные выходы. Питание цепей осуществляется со стороны нагрузки.

ВНИМАНИЕ! Во взрывозащищенном исполнении подключение к импульсным выходам осуществляется через сертифицированные барьеры взрывозащиты, имеющие на выходе искробезопасной цепи напряжение для питания выходных цепей импульсных выходов.

- 1.5.5.4 Клеммы "A", "B", "GND RS" (RS-485):
 - максимальное выходное напряжение Umax= 5,61 B;
- ток короткого замыкания Ікз не более 80 мА.

ВНИМАНИЕ! Внимание! Во взрывозащищенном исполнении УЗС-1М подключение к интерфейсному выходу осуществляется через сертифицированный барьер взрывозащиты.

1.5.6 УЗС-1М формирует архив (фиксация значений счетчиков расхода во времени) глубиной:

- минутный архив 1440 записей;
- часовой архив 960 записей;
- суточный архив 40 записей;
- месячный архив 24 записи;
- пользовательский архив 492 записи;
- архив компонентного состава 100 записей

- 1.6 Диагностика и индикация состояния (NAMUR NE107)
- 1.6.1 Прибор поддерживает стандарт NAMUR NE107, обеспечивающий унифицированную индикацию состояния устройства. Это позволяет оператору быстро идентифицировать неисправности и предпринимать соответствующие действия.
 - 1.6.1 Система визуальной индикации отображает следующие категории состояний:
- Критические ошибки (аппаратные сбои, например, при отсутствии подключения к датчику или при выходе значения скорости звука за допустимые пределы). Для восстановления работоспособности прибора, требуется обязательное устранение неисправности;
- Предупреждение (выход за допустимые диапазоны). Для уточнения причины предупреждения можно использовать программное обеспечение SmartStream;
- Необходимость обслуживания (переполнение архивов, замена батареи). Такая индикация означает, что устройству требуется проведение технического обслуживания.
 - 1.6.2 Основные типы сигналов приведены в Таблице 14 Таблица 14 Описание сигнализации по NAMUR NE107

Обозначение	Критическая ошибка	Предупреждение	Техническое обслуживание
сигнализации			
Отображение	$lack \infty$	A	
сигнализации	•	<u> </u>	•
Статусы	- Ошибка нахождения сигнала;	- Предупреждение	- Настройки летнего времени
	- Критический уровень АРУ	измерителя;	устарели;
	сенсора;	- Предупреждение	- Настройки зимнего времени
	- Отношение сигнал/шум ниже	интерфейсного	устарели;
	нормы;	модуля 1;	- Батарея требует замены;
	- Производительность;	- Предупреждение	- Минутный архив переполнен;
	- Проблемы с лучом;	интерфейсного	- Часовой архив переполнен;
	- Связи с измерителем;	модуля 2;	- Суточный архив переполнен;
	- Несовпадение контрольной суммы;	- Предупреждение на	- Месячный архив переполнен;
	- Прибор вне целевого региона;	луче 1 - 8;	- Журнал переполнен;
	- Связь с вычислителем.		- Журнал изменения регистров
			переполнен.

1.6.3 Примеры индикации

Примеры индикации представлены на рисунках 17, 18, 19

Рисунок 17 – Сигнализация о критической ошибке счетчика

Рисунок 18 – Сигнализация о техническом обслуживании расходомера

Рисунок 19 – Сигнализация о предупреждении расходомера

- 1.6.4 Рекомендации по реагированию
- Не игнорируйте предупреждения это может привести к переходу в аварийный режим.
- Критические ошибки требуют остановки работы устройства до устранения неисправности.
 - Используйте ПО SmartStream для детальной диагностики
 - 1.7 Обеспечение взрывобезопасности
- 1.7.1 Взрывобезопасность достигается за счет схемного и конструктивного исполнения УЗС-1М в соответствии с общими требованиями ТР ТС 012/2011, ГОСТ 31610.0-2019 (IEC 60079-0:2017), ГОСТ 31610.11-2014/IEC 60079-11:2006, ГОСТ IEC 60079-1-2013, ГОСТ 31610.7-2017 (IEC 60079-7:2015).
- 1.7.2 Чертежи обеспечения средств взрывозащиты УЗС-1М приведены в приложении В.
 - 1.7.3 Требования к обеспечению сохранения характеристик
- 1.7.3.1 БОИ должен эксплуатироваться в соответствии с классом взрывоопасной зоны и температурными условиями, приведенными в настоящем РЭ.
- 1.7.3.2 Взрывозащищенная оболочка БОИ не должна иметь механических повреждений (сколов, трещин, деформаций).
- 1.7.3.3 Кабельные вводы и заглушки должны соответствовать разъемам во взрывозащищенной оболочке БОИ и быть плотно затянутыми.
 - 1.7.3.4 Крышки взрывозащищенной оболочки должны быть плотно закручены.
- 1.7.3.5 Уплотнительные поверхности фланцевых соединений, а также крышек взрывозащищенной оболочки должны находиться в удовлетворительном состоянии.

- 1.7.3.6 Не должны присутствовать заметные повреждения кабелей.
- 1.7.3.7 Все части счетчика должны содержаться в чистоте, очищены от скоплений пыли и вредных веществ, способных вызвать избыточное повышение температуры.
- 1.7.3.8 При очистке непроводящих поверхностей необходимо предусмотреть меры для исключения образования статического электричества в процессе очистки.
- 1.7.3.9 Искробезопасные соединения должны быть подключены через барьеры искрозащиты, иметь надежный контакт и быть заземлены.
 - 1.7.4 Искробезопасные параметры
- 1.7.4.1 Все выходные искробезопасные цепи в блоке обработки информации имеют элементы, ограничивающие в аварийных режимах мощность сигнала, передаваемого в искробезопасную зону, и имеют потенциальную развязку с корпусом блока обработки информации.
 - 1.7.4.2 Защита по цепи питания обеспечивается:
- за счет питания УЗС-1M от источника питания, имеющего взрывозащищенное исполнение:
 - за счет использования на входе цепи питания быстродействующего предохранителя;
- за счет использования конденсаторов с суммарной емкостью не более оговоренных в ГОСТ Р МЭК 60079 и разделения цепей с помощью ограничительного резистора.
- 1.7.4.3 Защита выходных цепей к ПП осуществляется ограничением напряжения питания выходных цепей с помощью стабилитронов и ограничением тока с помощью резисторов.
 - 1.7.4.4 Защита выходных цепей токового выхода "Iout" обеспечивается:
 - за счет оптронной развязки схемы формирования токового сигнала от остальных цепей блока;
- за счет питания схемы формирования выходных сигналов от отдельной изолированной обмотки трансформатора;
- за счет подключения внешней нагрузки к токовому выходу через блок искрозащиты и ограничение выходного напряжения с помощью стабилитронов.
 - 1.7.4.5 Защита выходных цепей "Fout1", "Fout2" обеспечивается:
 - за счет оптронной развязки импульсных выходов от остальных цепей блока;
- за счет подключения внешней нагрузки к токовому выходу через блок искрозащиты и ограничение выходного напряжения с помощью стабилитронов.
 - 1.7.4.6 Защита выходных цепей интерфейсного выхода RS-485 обеспечивается:
 - за счет оптронной развязки схемы интерфейсного выхода RS-485 от остальных цепей блока;
- за счет питания схемы интерфейсного выхода RS-485 от отдельной изолированной обмотки трансформатора;
- за счет ограничения напряжения питания интерфейсного выхода RS-485 с помощью стабилитронов и ограничением тока с помощью резистора;
- за счет подключения к интерфейсному выходу внешней нагрузки, имеющей взрывозащищенное исполнение.
- 1.7.4.7 Все выходные искробезопасные цепи в БОИ имеют элементы, ограничивающие в аварийных режимах мощность сигнала, передаваемого в искробезопасную зону, и имеют потенциальную развязку с корпусом.
- 1.7.4.8 Электрические параметры БОИ при подключении искробезопасных цепей приведены в таблице 15.

Таблица 15 – Электрические параметры блока обработки информации

Параметр	Принимаемое значение
Цепь питания постоянного тока, В	1230
Максимальная мощность (не более), Вт	4
Максимальное напряжение Um, В	253

1.7.4.9 Предельно допустимые выходные параметры искробезопасных цепей приведены в таблице 16, предельно допустимые входные параметры - в таблице 17.

Таблица 16- Выходные параметры искробезопасных цепей

rustingu 10 Bilitogribio nupumorpii nenpoodeenueniin genen					
Искробезопасная цепь	Максимальное	Максимальный	Максимальная	Максимальная	Максимальная
	выходное	выходной ток	выходная	внешняя	внешняя
	напряжение	I_0 , MA	мощность Ро,	индуктивность	емкость C_0 ,
	U_0, B		Вт	L_0 , м Γ н	пФ
Токовая петля вход,	29,17	89,78	0,655	4	73000
активная (4-20мА)					
RS-485 ¹⁾	4,92	166	0,204	1,5	10^{8}
Ethernet ¹⁾	4,92	166	0,204	1,5	10^{8}
1) ВНИМАНИЕ! Подключать только через барьер искрозащиты					

у внимание: подключать только через оарьер искрозащиты

Таблица 17 – Входные параметры искробезопасных цепей

Искробезопасная цепь	Максимальное	Максимальный	Максимальная	Максимальная	
	входное	входной ток I_i ,	внутренняя	внутренняя	
	напряжение U _i ,	мА	индуктивность L _i ,	емкость Сі, нФ	
	В		мΓн		
RS-485 ¹⁾	6,29	209	0,9	31000	
Ethernet ¹⁾	6,29	209	0,55	31000	
Токовая петля выход,	30	-	0	10	
пассивная (4-20мA) ¹⁾					
Цифровые выходы	30	33	0	0	
$(открытый коллектор)^{1)}$					
1) ВНИМАНИЕ! Подключать только через барьер искрозащиты					

- 1.7.4.10 Подключение внешних электрических цепей к БОИ необходимо производить через кабельные вводы в соответствии с ГОСТ 31610.11-2014 (IEC 60079-11:2011).
 - 1.7.5 Специальные условия эксплуатации
- 1.7.5.1 Знак «Х» в конце маркировки взрывозащиты счетчиков означает, что при эксплуатации необходимо соблюдать следующие специальные условия:
- монтаж и подключение счетчика должны производиться при отключенном напряжении питания и соблюдении требований, указанных в настоящем РЭ, при отсутствии взрывоопасной среды;
- к внешним искробезопасным цепям БОИ без встроенного искрозащитного барьера допускается подключение только искробезопасного оборудования, имеющего действующий сертификат соответствия требованиям ТР ТС 012/2011 с соответствующей областью применения и характеристиками, отвечающими указанным в сертификате взрывозащиты счетчика;
- к внешним искробезопасным цепям БОИ со встроенным искрозащитным барьером допускается подключение оборудования без применения внешних барьеров искрозащиты;
- при эксплуатации счетчика необходимо соблюдать специальные условия применения, указанные в действующих сертификатах соответствия требованиям TP TC 012/2011 на комплектующие, входящие в состав счетчиков;
- применяемые Ex-кабельные вводы должны иметь действующий сертификат соответствия требованиям TP TC 012/2011 с соответствующей областью применения и видами взрывозащиты, неиспользуемые отверстия должны быть закрыты Ex-заглушками, имеющими действующий сертификат соответствия требованиям TP TC 012/2011 с соответствующей областью применения и видами взрывозащиты. Кабельные вводы и заглушки должны иметь характеристики, не ухудшающие характеристики взрывобезопасности счетчиков.

- для разнесенной версии с монтажным комплектом во избежание опасности возгорания от фрикционных искр, образующихся при трении и соударении деталей, необходимо оберегать ПП от механических ударов при монтаже, демонтаже, эксплуатации и обслуживании.
- при монтаже и эксплуатации расходомеров необходимо исключить нагрев (вызванный воздействием температуры технологического процесса) поверхности первичных преобразователей выше температур, допустимых по ГОСТ 31610.0-2019 (IEC 60079-0:2017) (п. 5.3) (указанному в Ех-маркировке изделия). При этом необходимо обеспечить теплоизоляцию первичного преобразователя. При разработке мер по обеспечению изоляции следует руководствоваться требованиями, указанными в п.2.6 настоящего руководства по эксплуатации.
 - 1.8 Устройство и работа УЗС-1М
- 1.8.1 Принцип действия УЗС-1М основан на зависимости скорости распространения ультразвукового сигнала между пьезоэлектрическими преобразователями "по" и "против" потока жидкости в трубопроводе от скорости течения жидкости.
 - 1.8.2 Формулы работы УЗС-1М
 - 1.8.2.1 Вычисление расхода Qt, м³/ч, в УЗС-1М (модель 11) осуществляется по формулам:
 - для КИ без отражения

$$Q = \frac{\pi * D^2}{4} * \frac{3600 * \Delta t * C_0^2}{2 * m * L_2 * \cos \alpha} \tag{1}$$

- для КИ с отражением

$$Q = \frac{\pi * D^2}{4} * \frac{3600 * \Delta t * C_0^2}{2 * m * 2 * L_2 * \cos \alpha}$$
 (2)

- для КИ с ПП вдоль оси:

$$Q = \frac{\pi * D^2}{4} * \frac{3600 * \Delta t * C_0^2}{2 * L_a * m}$$
 (3)

1.8.2.2 Вычисление расхода Qt, м 3 /ч, в У3С-1М (модели 21, 31) осуществляется по формуле:

$$Q_t = \frac{1}{m} * \left(\sum_{n=1}^{i=1} \frac{K_i * 3600 * \Delta t * \pi * D^2}{4 * S_i * 2 * L_{ai}} \right)$$
(4)

где D – значение диаметра трубопровода, м;

La, Lai – значение расстояния акустического канала м;

α, αі - значение угла установки ПП соответствующего канала, град;

т – значение гидродинамического коэффициента;

 t_e , t_{ei} — значение времени задержки сигнала в ПП, соединительных кабелях в соответствующем канале, с;

 $t_{up},\ t_{dw}$ — время распространения ультразвукового сигнала по потоку жидкости в соответствующем канале, с;

 t_{zero} , t_{zeroi} — время коррекции нуля в соответствующем канале, с;

 Δt , Δti — разность времен Δt распространения ультразвукового сигнала "по" и "против" потока в соответствующем канале, с;

Si- коэффициент влияния смещения оси установки $\Pi\Pi$ от оси трубопровода в соответствующем канале;

Кі – коэффициент влияния каждого канала на суммарное значение расхода;

n - количество каналов (зависит от модели УЗС-1М).

1.8.2.3 Период Тw следования импульсов объема на импульсном выходе вычисляется по

формуле:

$$T_{wp} = \frac{3600 * B}{Q_t}$$
 (5),

где Tw - период следования импульсов, с;

"В" – весовой коэффициент импульсного выхода УЗС-1М, м³/имп;

Qt – текущее значение расхода, м3/ч.

1.8.2.4 Значение выходного тока I_p (при наличии токового выхода) вычисляется по формуле:

$$I_p = I_{min} \frac{(I_{max} - I_{min}) * Q_t}{Q_{max}}$$
 (6),

где Imin - минимальное значение выходного тока (0 или 4 мA), соответствующее расходу $Q = 0 \text{ м}^3/\text{ч}$;

 $Imax - максимальное значение выходного тока (5 или 20 мА), соответствующее расходу <math>Q = 0 \text{ м}^3/\text{ч}$;

Qt – текущее значение расхода, $M^3/4$;

 Q_{max} — максимальное значение расхода, на который настроен УЗС-1М, м³/ч.

1.8.2.5 Значение частоты Fp, Гц выходного частотного сигнала вычисляется по формуле:

$$F_p = \frac{F_{max} * Q_t}{Q_{max}} \ (7),$$

где Qt – текущее значение расхода, $M^3/4$;

 Q_{max} – максимальное значение расхода, на которое настроен УЗС-1М, м³/ч;

 $F_{max} = 10000$ Γ ц — максимальное значение частоты выходного сигнала, соответствующее Q_{max} .

- 1.8.3 Настроечные данные вводятся в УЗС-1М на этапе настройки УЗС-1М в соответствии с опросным листом в режиме "НАСТРОЙКА".
- 1.8.4 При выпуске из производства и при периодической поверке осуществляется проверка УЗС-1М на соответствие вычисления параметров УЗС-1М формулам 1-7.
 - 1.8.5 Описание режимов работы УЗС-1М
 - 1.8.5.1 Режимы работы УЗС-1М:
 - работа;
 - контроль контроль введенных и измеренных УЗС-1М параметров;
 - архив просмотр архива;
 - настройка ввод параметров в УЗС-1М;
 - поверка режим поверки УЗС-1М;
 - управление режим управления некоторыми параметрами при настройке;
 - интерфейс установка параметров интерфейса;
 - служебное установка параметров на заводе-изготовителе.
- 1.8.5.2 Для исключения несанкционированного доступа к настроечным параметрам УЗС-1М вход в разделы меню "НАСТРОЙКА", "ПОВЕРКА", "УПРАВЛЕНИЕ" возможен только после нажатия на кнопку "СЕКРЕТ", расположенную внутри блока в линейке ЛПВС-3 около разъема "JTAG" (кнопку держать нажатой до появления на индикаторе в поле 1 рисунок Рисунок буквы "U") и набора пароля. Пароль указывается в паспорте на УЗС-1М.
- 1.8.5.3 Вход в раздел меню "СЛУЖЕБНОЕ" возможен только после набора второго пароля. В процессе эксплуатации вход в этот раздел меню не требуется.
- 1.8.5.4 Вход в нижестоящий раздел меню или переход к редактированию значения параметра осуществляется нажатием на кнопку «→». Переход между пунктами меню осуществляется нажатием на кнопки «▼» и « \ ». Возврат в вышестоящий раздел меню или

КД-УЗС-1М-07-038

29

выход из редактирования значения параметра осуществляется нажатием на кнопку « > ». Если в течение нескольких минут (1÷2 мин) не происходит нажатий на кнопки, УЗС-1М автоматически выходит из меню. При этом, если были изменены какие-либо значения параметров, то выдается запрос на сохранение значений введенных параметров. Если опять в течение нескольких минут не происходит нажатий на кнопки, то происходит выход без сохранения изменений параметров.

- 1.8.5.5 Если введенное значение параметра не удовлетворяет разрешенному диапазону значений (min или max), то на дисплей выводиться предельное значение (минимальное или максимальное) для редактируемого параметра.
- 1.8.5.6 При выходе из меню для сохранения введенных изменений необходимо выбрать пункт "ЗАПОМНИТЬ", выход без изменений – "НЕ ЗАПОМИНАТЬ".
- 1.8.5.7 При выходе из меню с сохранением введенных изменений происходит проверка значений параметров на взаимное соответствие. Если параметры не удовлетворяют этим условиям, то происходит возврат в меню в пункт "ОШИБКА В ДАННЫХ". При нажатии на кнопку «-->» происходит вход в подменю, где указываются параметры, в которых допущены ошибки.

Проверяемые параметры:

- соответствие максимального расхода Отах и внутреннего диаметра трубопровода D, при этом должно выполняться условие:

$$0.002827 D^2 < Qmax < 0.05 D^2$$

где D – внутренний диаметр трубопровода, мм;

 Q_{max} – максимальный расход, м³/ч.

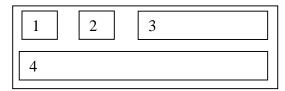
- взаимное соответствие расходов Q_{max} , Q_{min} и Q_{orc} , при этом должно выполняться условие: $Q_{\text{otc}} \leq Q_{min} < Q_{max}$
- взаимное соответствие Q_{max} и "В", при этом должны выполняться данные таблицы 5.
- взаимное соответствие расходов Q1, Q2, Q3, Q4, Q5, Q6, Q7 и Q8 при введении аппроксимации, при этом должно выполняться условие:

$$Q1 < Q2 \le Q3 \le Q4 \le Q5 \le Q6 \le Q7 \le Q8$$

- 1.8.5.8 Если при работе с меню изменение параметров не производилось, то происходит выход без запроса на сохранение параметров.
 - 1.8.6 Описание функционирования УЗС-1М в режиме "РАБОТА"
 - 1.8.6.1 Структура полей индикатора в режиме "РАБОТА" показана на рисунке 20.

1	2	
3		

1 – поле кода нештатной ситуации; 2 – поле наименования индицируемого параметра; 3 – поле значения индицируемого параметра


Рисунок 20 – Структура полей индикатора в режиме "РАБОТА"

- 1.8.6.2 В поле 1 в виде знака «*» выводится сообщение о наличии в текущий момент нештатной ситуации (НС). Вид НС можно посмотреть в меню "КОНТРОЛЬ - НЕШТАТНЫЕ СИТУАШИИ"
- 1.8.6.3 В поле 2 осуществляется индикация наименования выводимых параметров. Список выводимых параметров зависит от модели и настройки УЗС-1М.

Смена индицируемых параметров в режиме "РАБОТА" осуществляется с помощью кнопок «Т» или «**↓**».

30

- 1.8.6.4 В поле 3 осуществляется индикация значения, выбранного в поле 2 параметра.
- 1.8.7 Описание функционирования УЗС-1М в режиме "АРХИВ"
- 1.8.7.1 Просмотр архивных данных осуществляется в меню "АРХИВ". Если в архиве еще нет данных, то выводится сообщение "НЕТ ДАННЫХ".
- 1.8.7.2 Структура полей индикатора в режиме просмотра часового (месячного) архива показана на рисунке 21.

1 – обозначение параметра; 2 – час (месяц) - период времени, за который осуществляется просмотр архива;

3 – дата (год) - период времени, за который осуществляется просмотр архива; 4 – значение параметра.

Рисунок 21 – Структура полей индикатора в режиме просмотра часового (месячного) архива

При просмотре нештатных ситуаций (HC) в поле 4 выводится (в зависимости от модели УЗС-1М) информация, показанная на рисунке 22.

4.1 – НС по 1-ому каналу (по 1-ому трубопроводу);

4.2 – НС по 2-ому каналу (по 2-ому трубопроводу).

Рисунок 22 – Структура информации в поле 4 при просмотре нештатных ситуаций

Структура полей индикатора в режиме просмотра суточного архива показана на рисунке 23.

1	2	
3		

1 — обозначение параметра; 2 — дата - период времени, за который осуществляется просмотр архива; 3 — значение параметра.

Рисунок 23 – Структура полей индикатора в режиме просмотра суточного архива

При просмотре нештатных ситуаций (HC) в поле 3 выводится (в зависимости от модели УЗС-1М) информация, показанная на рисунке 24.

3.1	3.2	3.3	3.4

3.1 – HC по 1-ому каналу (по 1-ому трубопроводу); 3.2 – HC по 2-ому каналу (по 2-ому трубопроводу); 3.3 – HC по 3-му каналу; 3.4 – HC по 4-ому каналу.

Рисунок 24 – Структура информации в поле 3 при просмотре нештатных ситуаций

- 1.8.7.3 После входа в режим просмотра архива курсор находится в поле 1 (рисунки 21 и 23).
- 1.8.7.4 Кнопкой « » осуществляется последовательный перевод курсора по полям 1 2 3 4 5 1 и т.д.

 - 1.8.7.6 Нажатием на кнопку «**←** » производится выход из режима просмотра архива.
- 1.8.7.7 Чтение архива через интерфейсные выходы с помощью компьютера осуществляется только тогда, когда УЗС-1М находится в режиме "РАБОТА" или

"КОНТРОЛЬ".

- 1.8.8 Индикация объёма цифровая
- 1.8.8.1 Максимальная емкость счетчика объема 9999999999999999 м³. Цена единицы младшего разряда (весовой коэффициент "В"): 1 л, 10 л, 100 л, 1 м³, 10 м³ или 100 м³ (выбирается при настройке прибора, в зависимости от значения Qmax для данного УЗС-1М, в соответствии с таблицей 18.

Таблица 18 – Весовой коэффициент "В" УЗС-1М

	T T		_			
Omay 163/11	От 0,181 до	От 0,55 до	От 5,5 до	От 55	От 550	От 5500
Qmax, м ³ /ч	3,6	36	360	до 3600	до 36000	до 200000
Коэффициент "В"	1 л	10 л	100 л	1 m ³	10 м ³	100 м ³

1.8.8.2 Коэффициент преобразования расходомера рассчитывается исходя из Q_{max} по формуле:

$$B = \frac{Q_{\text{max}}}{10000}$$
, (с округлением до 5 знаков)

Изменение информации на счетчике объема происходит с дискретностью, равной весовому коэффициенту "В".

- 1.8.8.3 При отключении питания информация о значении объема сохраняется в энергонезависимой памяти прибора.
- 1.8.8.4 УЗС-1М имеет возможность учета объема жидкости, прошедшей в прямом и обратном направлениях и суммарного объема.
- 1.8.9 Индикация расхода цифровая, с плавающей запятой, в м 3 /час. Минимальное значение единицы младшего разряда 0.0001 м^3 /час. Количество разрядов после запятой зависит от значения весового коэффициента "В". При изменении направления потока УЗС-1М индицирует отрицательное значение расхода.
- 1.8.10 Индикация времени цифровая, в формате: XXчXXмXXс. Таймер считает время исправной работы, когда УЗС-1М находится в рабочем режиме. Таймер время не считает:
 - при отсутствии жидкости в КИ;
 - при обрыве соединительных кабелей;
 - при неисправности ПП или блока обработки информации;
- при отсутствии электропитания УЗС-1М. При отключении питания часы реального времени в приборе работают от внутреннего источника питания.
 - 1.9 Маркировка и пломбирование
 - 1.9.1 Маркировка УЗС-1М соответствует КД.

Маркировочная табличка УЗС-1М отражает следующие сведения:

- наименование предприятия изготовителя;
- УЗС-1М тип прибора;
- № серийный номер;
- маркировка взрывозащиты
- № сертификата и наименование органа по сертификации
- дата изготовления (месяц, год);
- DN, мм условный диаметр ИУ (трубопровода);
- PN, кгс/см² номинальное давление жидкости в трубопроводе;
- степень защиты ІР.
- основные электротехнические показатели искробезопасных цепей;
- масса нетто;
- знак утверждения типа средств измерений;
- Ех маркировка взрывозащиты;

КД-УЗС-1М-07-038

32

На компактной версии УЗС-1М табличка с маркировкой располагается на блоке обработки информации.

На разнесенной версии на УЗС-1M располагают две таблички с маркировкой: одна на БОИ, вторая на КИ.

1.9.2 Маркировка взрывозащиты 1Ex db e ia [ia Ga] IIC T6...T1 Gb X наносится на БОИ и на КИ, и соответствует ГОСТ Р 52350.1 (МЭК 60079-1), ГОСТ Р 30852.10 (МЭК 60079-11), ГОСТ 12.2.007.0.

Знак X, стоящий после маркировки взрывозащиты, означает, что при эксплуатации счётчика расходомера ультразвукового необходимо соблюдать следующие специальные условия:

- БОИ должен устанавливаться удалённо, если диапазон температуры измеряемой среды выше или ниже эксплуатационной температуры (таблица 6). Для поддержания температуры окружающей среды выше минус 10 °C допускается использование термочехлов;
- Питание БОИ с видом взрывозащиты искробезопасная электрическая цепь «i» должно осуществляться от сертифицированных барьеров искрозащиты, предназначенных для питания искробезопасных цепей уровня "ia" или "ib".
 - 1.9.3 Маркировка КИ соответствует чертежам согласно модификации УЗС-1М.
 - 1.9.4 Под крышкой кабельного отсека нанесена маркировка клемм:
- P1, P2, P3, P4, P5, P6 клеммы для подключения соединительных кабелей к ПП (разнесенная версия);
 - +24V, -24V клеммы для подключения источника питания;
 - RS-485(A), GND(RS), RS-485(B) клеммы интерфейсного выхода RS-485;
 - +Fout1, -Fout1, +Fout2, -Fout2 клеммы импульсных выходов;
 - +Iout, -Iout клеммы токового выхода.
- 1.9.4.1 В зависимости от модели исполнения УЗС-1М некоторые клеммы могут быть не задействованы или отсутствовать.
 - 1.9.4.2 На задней стенке блока обработки информации нанесена маркировка заземления:
 - = знак места подключения заземления.
- 1.9.5 Блок обработки информации и крышки, закрывающие ПП, пломбируются в соответствии с КД.

ВАЖНО! Запрещается снятие пломб предприятия-изготовителя. За исправную работу УЗС-1М с поврежденными пломбами предприятие-изготовитель ответственности не несёт

- 1.9.5.1 Снимать пломбы имеет право предприятие-изготовитель или уполномоченные на это организации.
- 1.9.5.2 Опломбирование обеспечивается путем нанесения наклеек из легкоразрушаемого материала.
 - 1.10 Упаковка
- 1.10.1 Упаковка производится на предприятии-изготовителе и может отличаться в зависимости от исполнения УЗС-1М. Наиболее частый вид используемой транспортной тары ящики фанерные или деревянные.

ПРЕДУПРЕЖДЕНИЕ! В процессе погрузочных, разгрузочных работ и транспортирования упаковка с УЗС-1М не должна подвергаться резким ударам и воздействию атмосферных осадков

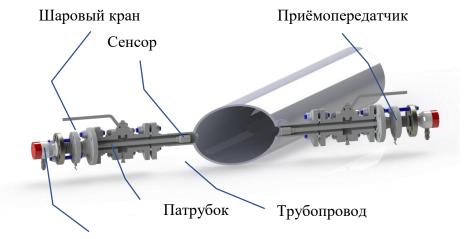

1.10.2 Комплектность УЗС-1М показана в таблице 19.

Таблица 19 – Комплектность УЗС-1М

Наименование	Обозначение	Количество, шт.
Расходомер-счетчик ультразвуковой УЗС-1М: - блок обработки информации; - корпус измерительный	Соответствует номерам спецификаций	1: - 1 - в зависимости от исполнения
Монтажный комплект	PMTB.05.000.07.0000.000	в зависимости от исполнения
Комплект соединительных кабелей	-	в зависимости от исполнения
Программное обеспечение на электронном носителе «KTM Smart Stream»	-	1
Программное обеспечение «КТМ Smart Stream. Руководство пользователя»	PMTB.26.900.01.0100.000 99	1
Руководство по эксплуатации	РМТВ.26.000.00.0000.000РЭ	1
Паспорт	РМТВ.26.000.00.0000.000ПС	1
Методика поверки	-	1
Сертификаты	TP TC	По запросу

- 1.10.2.1 Дополнительно, в зависимости от конкретного заказа, в состав УЗС-1М могут входить:
- комплект приёмопередатчиков для второго измерительного луча, увеличивающий точность измерений;
 - лубрикаторный механизм;
- корпус измерительный отрезок трубы с фланцами или без них, предназначенный для монтажа в имеющийся трубопровод, оснащенный фланцами, с патрубками для установки приемопередающих блоков;
 - монтажный комплект для установки УЗС-1М на трубопровод;
 - модуль выносной;
 - термочехол;
 - комплект ЗИП;
 - преобразователь напряжения 220/24В;
 - струевыпрямитель;.
 - 1.10.3 Монтажный комплект включает в себя:
 - патрубок;
 - приёмопередатчики;
 - БОИ:
 - комплект соединительных кабелей;
 - шаровый кран;
 - глухой фланец;
 - уплотнения;
 - шпильки, гайки, шайбы;
 - устройство для установки под давлением (опционально).

Приёмопередатчик

КД-УЗС-1М-07-038 34

- 2 Использование по назначению
- 2.1 Рабочие условия эксплуатации
- 2.1.1 Компактная версия УЗС-1М:
- температура окружающей среды от минус 40 °C до плюс 60 °C (по спецзаказу от минус 70 °C до плюс 60 °C);
- относительная влажность воздуха 95±3% при температуре плюс 35 °C и более низких температурах, без конденсации влаги;
 - группа исполнения по виброустойчивости N1 по ГОСТ Р 52931;
 - исполнение IP66/IP68 по ГОСТ 14254
 - 2.1.2 Разнесенная версия УЗС-1М
 - 2.1.2.1 Корпус измерительный:
- температура окружающей среды от минус 40 °C до плюс 60 °C (по спецзаказу от минус 70 °C до плюс 80 °C);
- относительная влажность воздуха до 95±3% при температуре плюс 35 °C и более низких температурах, без конденсации влаги;
 - группа исполнения по виброустойчивости N2 по ГОСТ Р 52931;
 - степень защиты IP66 / IP68 по ГОСТ 14254.
 - 2.1.2.2 Блок обработки информации:
 - температура окружающей среды от минус 40 °C до плюс 60 °C;
- относительная влажность воздуха 95±3% при температуре плюс 35 °C, без конденсации влаги;
 - группа исполнения по виброустойчивости N1 по ГОСТ Р 52931;
 - исполнение IP66/IP68 по ГОСТ 14254

Контролируемая жидкость:

- акустически прозрачная жидкость (содержание в жидкости механических примесей не более 5 % и газовых включений не более 3 % по объему) для прохождения ультразвуковых колебаний (холодная и горячая вода, сточные воды, нефть и нефтепродукты, и другие не активные к материалу КИ жидкости);
- кинематическая вязкость до $300 \times 10^{-6} \,\mathrm{m}^2/\mathrm{c}$ ($300 \,\mathrm{cCt}$) при условии прохождения через нее ультразвука, с расширенным диапазоном 1000 сСт исполнение для жидкости с высокой вязкостью.
 - 2.2 Эксплуатационные ограничения
- 2.2.1 УЗС-1М является сложным электронным устройством, поэтому требует квалифицированного обращения в точном соответствии с требованиями и рекомендациями технического описания и инструкции по эксплуатации.
- 2.2.2 При эксплуатации УЗС-1М (разнесенная версия) во взрывоопасных зонах классов В-І, В-Іа, В-Іг и В-ІІа согласно ПУЭ, длина соединительного кабеля от блока обработки информации до КИ не должна превышать 15 м.
- 2.2.3 Эксплуатация УЗС-1М должна производиться в соответствии с требованиями настоящего руководства по эксплуатации, требованиями ПЭ обработки информации "Электроустановки взрывоопасных производств ПТЭ и ПТБ", а также других инструкций, действующих в данной отрасли промышленности.
- 2.2.4 При эксплуатации УЗС-1М должны подвергаться систематическому внешнему и периодическим осмотрам. При внешнем осмотре необходимо проверить:
- отсутствие обрывов или повреждений изоляции соединительных кабелей, кабеля питания и отсутствие обрывов заземляющих проводов;

- прочность крепления блока и болтов заземляющих соединений;
- отсутствие вмятин, видимых механических повреждений кожуха блока;
- соответствие плавких вставок их номинальным данным.
- Эксплуатация УЗС-1М с повреждениями и неисправностями категорически запрещается. Периодичность профилактических осмотров не реже двух раз в год.
- 2.2.5 Ремонтные и регулировочные работы с УЗС-1М разрешается производить специалистам службы КИП предприятия, прошедшим обучение работе с УЗС-1М на предприятии-изготовителе, имеющим доступ к работе с напряжением до 1000 В и прошедшим соответствующий инструктаж.
- 2.2.6 При применении монтажного комплекта M для замены ПП необходимо произвести сброс давления в трубопроводе, освободив трубопровод от жидкости до уровня ниже места установки ПП.
 - 2.2.7 Установка УЗС-1М
- 2.2.7.1 Установка УЗС-1М осуществляется на горизонтальном, наклонном или вертикальном (при условии направления потока жидкости снизу-вверх) участке трубопровода.
- 2.2.7.2 При монтаже УЗС-1М необходимо обеспечить прямолинейные участки трубопровода до ПП и после, как показано на рисунках 25 33.

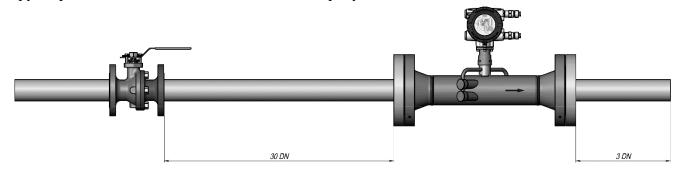


Рисунок 25 – Монтаж на участке с задвижкой.

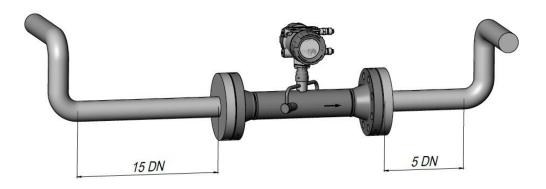


Рисунок 26 – Монтаж на участке с коленом, 2 плоскости.

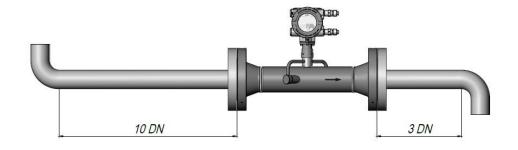


Рисунок 27 – Монтаж на участке с коленом.

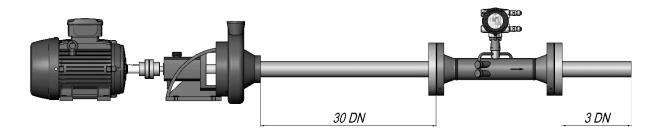


Рисунок 28 – Монтаж на участке с насосом.

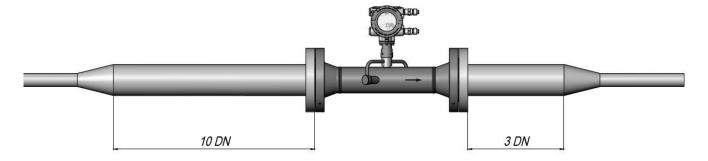


Рисунок 29 – Монтаж на участке с расширением трубопровода

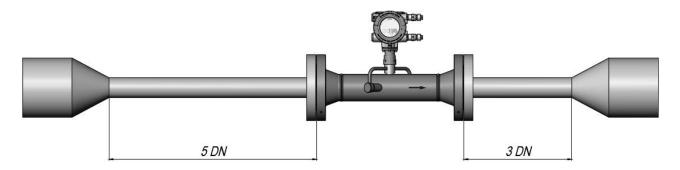


Рисунок 30 – Монтаж на участке с сужением трубопровода

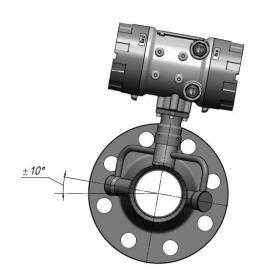


Рисунок 31 – Угловое положение при монтаже

КД-У3С-1М-07-038

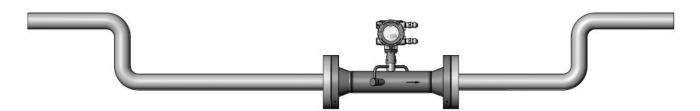


Рисунок 32 – Монтаж на участке с занижением трубопровода

Рисунок 33 – Монтаж на участке с подъёмом трубопровода

2.2.7.3 Длина прямолинейного участка до места расположения ПП (или монтажа ПП на трубопроводе) должна соответствовать таблице 20.

Таблица 20 – Длина прямолинейного участка

Вид устройства, искажающего поток	Длина прямолинейного участка, не менее, DN	Примечание
Конфузор	5	При условии калибровки и поставки КИ с конфузором
Конфузор, колено (плавный поворот), полностью открытая задвижка	10	
Тройник или колено одного диаметра	15	
Тройник или колено разных диметров	20	
Диффузор	10	
Насос, задвижка	30	

Примечания

- 1 Для УЗС-1М с расположением ПП вдоль оси КИ, длина прямолинейного участка до и после места установки КИ не регламентируется.
 - 2 Конфузор и диффузор стандартные конические конусные переходы.
- 3 При установке перед КИ специальных струевыпрямляющих устройств, длина прямолинейного участка трубопровода перед КИ может быть уменьшена в два раза.
- 4 Прямолинейный участок должен быть только от ближнего к КИ устройства, искажающего поток. Расстояние от КИ до других устройств, искажающих поток, должно соответствовать данной таблице, но прямолинейность трубопровода необязательна.
- 2.2.7.4 Длина прямолинейного участка после места расположения ПП (монтажа ПП на трубопроводе) должна быть не менее 3 DN.
- 2.2.7.5 В месте установки УЗС-1М должны соблюдаться следующие требования и условия:
 - возможность измерения параметров трубопровода в условиях эксплуатации;
 - давление жидкости и режимы эксплуатации трубопровода исключают газообразование;
 - в трубопроводе не должен скапливаться воздух;

- трубопровод в месте установки УЗС-1М всегда полностью заполнен жидкостью;
- отсутствуют, либо минимальны пульсации и завихрения жидкости.
- 2.2.7.6 При монтаже на открытый конец трубопровода для поджатия потока должна быть установлена регулирующая задвижка на расстоянии не менее 5 DN от места установки КИ.
- 2.2.7.7 Отклонение внутреннего диаметра трубопровода от внутреннего диаметра КИ не должно превышать $\pm 1~\%$.
- 2.2.7.8 Трубопровод может иметь незначительную коррозию. Отношение шероховатости трубопровода к внутреннему диаметру должно быть не более 0,01. При сильно коррозированном трубопроводе погрешности УЗС-1М не нормируются.
- 2.2.7.9 Отклонение диаметра трубопровода в разных плоскостях (эллипсность трубопровода) не должно превышать 0,01 от среднего диаметра трубопровода.
- 2.2.7.10 Трубопровод должен быть постоянно заполнен водой даже при отсутствии потока с обеспечением условия исключения возможности обледенения жидкости в УЗС-1М.
- 2.2.7.11 При повторном монтаже УЗС-1М (после периодической поверки) обеспечить прежнее положение УЗС-1М относительно направления измеряемого потока.
 - 2.2.7.12 Не рекомендуется:
 - устанавливать УЗС-1М вблизи мест, где часто производятся сварочные работы;
- подключение к одной с блоком обработки информации электрической фазе оборудования, создающего электромагнитные помехи;
- осуществлять прокладку кабелей от разных блоков обработки информации на расстоянии менее 0,2 м.
- 2.2.7.13 Место установки УЗС-1М должно обеспечивать удобство обслуживания. В случае, когда трубопровод проложен в земле, место установки УЗС-1М необходимо оборудовать сухой камерой с надежным перекрытием и с люком-лазом. Размеры сухих камер зависят от диаметра трубопровода и должны обеспечить возможность работы внутри камеры. Ориентировочно размеры сухих камер, в зависимости от диаметра трубопровода (DN), указаны в таблипе 21.

Таблица 21 – Размеры камер

позволять производить обслуживание УЗС-1М.

Диаметр условного прохода (DN) трубопровода	Внутренние размеры сухой камеры, мм, не менее
до 300	1900 x 1900
400	2000 x 2000
500	2200 x 2200
600	2400 x 2400
700	2600 x 2600
800	2800 x 2800
900	3000 x 3000
1000	3200 x 3200
1400	3800 x 3800
1600	4200 x 4200
2000	5000 x 5000
2400	5800 x 5800
Примечание – На действующих трубопроводах размеры в	самер могут отличаться от указанных в таблице, но должны

2.2.7.14 Трубопроводы, в месте установки КИ (монтажа ПП) должны находиться на расстоянии не менее 600 мм от стены для удобства проведения сварочных, монтажных работ и ремонтных работ.

КД-УЗС-1М-07-038

- 2.3 Требования к электромонтажу во взрывоопасной зоне
- 2.3.1 Монтаж счетчика в взрывоопасной зоне должен производиться в соответствии с требованиями ГОСТ IEC 60079-14-2013, Правила устройства электроустановок (глава 7.3 «Электроустановки во взрывоопасных зонах») и прочих нормативных документов, действующих на предприятии заказчика.
- 2.3.2 При монтаже необходимо учитывать специальные условия эксплуатации, приведенные в пункте 1.7.5 настоящего РЭ.
 - 2.3.3 Кабели, входящие в комплект поставки не подлежат замене на другой тип.
- 2.3.4 Подключение питания и интерфейсных выводов должно соответствовать требованиям ГОСТ 31610.0-2019 (IEC 60079-0:2017), ГОСТ 31610.11-2014 (IEC 60079-11-2011).
- 2.3.5 Подключение внешних электрических цепей к счетчику должно осуществляться через кабельные вводы.
- 2.3.6 Неиспользуемые кабельные вводы должны быть закрыты заглушками, соответствующими требованиям ГОСТ 31610.0-2019 (IEC 60079-0:2017).
- 2.3.7 Кабельные вводы должны быть выбраны в соответствии с диаметром кабеля. Не допускается использование уплотнительной ленты, термоусадочной трубки или других материалов для подгонки кабеля под кабельный ввод.
 - 2.4 Подготовка УЗС-1М к использованию
 - 2.4.1 Внешний осмотр
- 2.4.1.1 При внешнем осмотре блока обработки информации и КИ после распаковки проверяют на отсутствие механических повреждений и на наличие заводских пломб.
- 2.4.1.2 При проведении профилактических работ обращается внимание на отсутствие внешних повреждений, наличие и четкость надписей, особенно для искробезопасных цепей, наличие пломб, исправность заземляющих устройств, надежность присоединения кабелей, прочность крепления.
- 2.4.1.3 При обнаружении неисправностей дальнейшая эксплуатация УЗС-1М запрещается до устранения неисправностей.
 - 2.4.2 Проверка комплектности
- 2.4.2.1 Комплектность УЗС-1М перед установкой на месте эксплуатации проверяется согласно пункту 1.10.2 настоящего РЭ.
 - 2.4.3 Установка и монтаж УЗС-1М
- 2.4.3.1 При монтаже УЗС-1М необходимо руководствоваться настоящим РЭ, Инструкцией по монтажу РМТВ.26.000.00.0000.000ИМ1 (для монтажного комплекта), главой 3 ПЭ обработки информации и ПТБ, ПУЭ и другими документами, действующими в данной отрасли промышленности.
 - 2.4.3.2 Монтаж КИ

Установить КИ в трубопровод так, чтобы направление потока совпадало со стрелкой на КИ, несоосность КИ и трубопровода не превышала 1% от Ду трубопровода и отсутствовало смещение прокладок между фланцами.

Установка КИ в трубопровод должна осуществляться таким образом, чтобы ПП располагались в горизонтальной плоскости. Допускается отклонение на ± 10 °C.

Установка УЗС-1М (компактная версия) при температуре жидкости более $60~^{\circ}$ С осуществляется с теплоизоляционным чехлом, входящим в комплект поставки, или необходимо использовать разнесенную версию УЗС-1М.

Для установки КИ с ответными фланцами в трубопроводе необходимо вырезать участок и установить ответные фланцы так, чтобы обеспечивался свободный монтаж и демонтаж КИ. После приварки фланцев, выступающий внутрь трубы корень сварного шва, удалить.

- 2.4.4 Для разнесенной версии УЗС-1М крепление БОИ к стене осуществляется с помощью винтов или саморезов через четыре отверстия в кронштейне (см. рисунок 6).
 - 2.4.5 Монтаж соединительных кабелей
- 2.4.5.1 Соединительные кабели от КИ к БОИ проложить (разнесенная версия) в трубах, металлических рукавах, кабель-каналах или другим образом, исключающим их механическое повреждение в процессе эксплуатации.
- 2.4.5.2 Подключить соединительные кабели от КИ к клеммам Р в монтажной коробке БОИ, пропущенными через кабельные вводы в соответствии с рисунками 34 и 35 (разнесенная версия). В компактной версии кабели от КИ подключены внутри УЗС-1М.

ЗАПРЕЩАЕТСЯ!

Прокладывать соединительные кабели совместно с силовыми кабелями. Изменять длину (укорачивать и удлинять другим кабелем) соединительных кабелей.

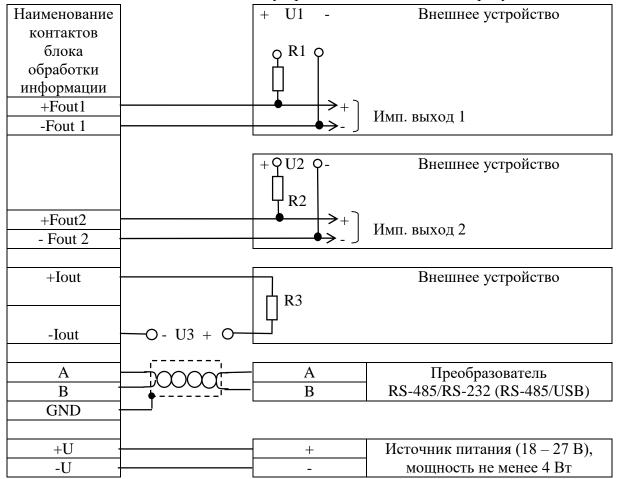
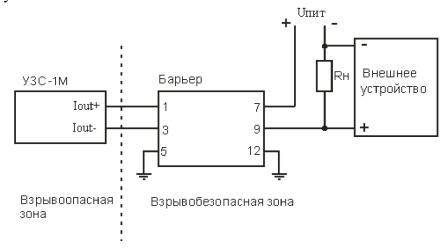

Блок обработки			k	СИ
информации			Метка	№ПП
-P1	<u>(_)</u>	(-)	Есть	ПП1
+P1	<u> </u>	'†	Нет	11111
-P2	\(\frac{\sigma}{\sigma}\)	()	Есть	ПП2
+P2		'†	Нет] 11112

Рисунок 34 – Схема соединений УЗС-1М модели 11

Блок обработки		K	М
информации		Метка	№ПП
-P1		Есть	ПП1
+P1	''	Нет	11111
-P2	(*)	Есть	ПП2
+P2	<u> </u>	Нет	11112
-P3	\(\frac{\frac}\fint{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac	Есть	ПП3
+P3	(*)	Нет	11113
-P4		Есть	ПП4
+P4] 	Нет	11114

Рисунок 35 – Схема соединений УЗС-1М модели 21

- 2.4.6 Подключение УЗС-1М
- 2.4.6.1 Сечение проводов выбирается в диапазоне от 0,35 до 1,00 мм². При этом общее сопротивление проводов питания не должно превышать 5 Ом.
 - 2.4.6.2 Схема подключения внешних устройств к БОИ показана на рисунке 36.


- 1 U1 (U2), B источники питания с напряжением, необходимыми для согласования с внешними устройствами (Umax = 25 B); R1 (R2), Om нагрузочные резисторы с сопротивлениями, определяемыми по формуле:
 - $R1\ (R2) = U1\ (U2)\ /\ I$, где I значение тока в цепи $(I=0,005...0,02\ A)$. 2 U3, B источник питания с напряжением, необходимым для согласования с внешним устройством (U3max = 27 B); R3, Om внутреннее сопротивление нагрузки, которое не должно превышать значения:

 $R3 = R_H - R_{J},$ где R_J – сопротивление соединительной линии между блоком обработки информации и внешним устройством. R_H – общее сопротивление нагрузки в токовой цепи. R_H , O_M , определяется по формуле: $R_H \left[O_M\right] = \left(U_J \left[B\right] - 5\right) / I_{Max},$

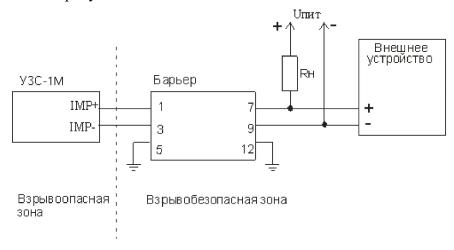
где Ітах — максимальное значение выходного тока (5 или 20 мА).

Рисунок 36 – Схема подключения внешних устройств к БОИ

2.4.6.3 Схема подключения к токовому выходу взрывозащищенного исполнения УЗС-1М показана на рисунке 37.

- 1 Uпит, B источник питания с напряжением, необходимым для согласования с внешним устройством (Uпит max = 27~B);
 - 2 Rн, Ом внутреннее сопротивление нагрузки, которое не должно превышать значения: $R_H = R o \delta \mathfrak{m} R \pi$,

где Rл – сопротивление соединительной линии между блоком обработки информации и внешним устройством; Rобщ – общее сопротивление нагрузки в токовой цепи. Rобщ, Ом, определяется по формуле:

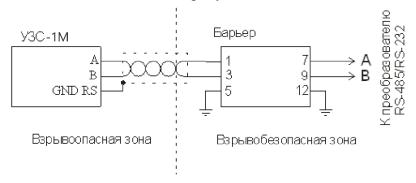

Rобщ [Ом] = (Uпит [B] - 10) / Imax [A],

где Imax – максимальное значение выходного тока (5 мА или 20 мА).

3 - Вместо барьера искрозащиты возможно использование другого барьера с аналогичными параметрами.

Рисунок 37 – Схема подключения к токовому выходу

2.4.6.4 Схема подключения к импульсным выходам УЗС-1М взрывозащищенного исполнения показана на рисунке 38.


1 - Uпит, B - источники питания с напряжением, необходимыми для согласования с внешними устройствами (Uпит max = 6,5 B);

где I — значение тока в цепи (I = $0.005 \div 0.02$ A).

2 - Вместо барьера искрозащиты возможно использование другого барьера с аналогичными параметрами.

Рисунок 38 – Схема подключения к импульсным выходам

2.4.6.5 Схема подключения к интерфейсному выходу RS-485 УЗС-1М взрывозащищенного исполнения показана на рисунке 39.

- 1 Линия связи экранированная витая пара, длиной до 500 м;
- 2 Вместо барьера искрозащиты возможно использование другого барьера с аналогичными параметрами. Рисунок 39 Схема подключения к интерфейсному выходу
- 2.5 Использование УЗС-1М
- 2.5.1 Проверка работы и настройка УЗС-1М
- 2.5.1.1 УЗС-1М настроены на заводе-изготовителе. После установки и монтажа на месте эксплуатации необходимо произвести проверку работы УЗС-1М.
- 2.5.1.2 При поставке УЗС-1М без индикации контроль параметров осуществляется через активированный интерфейсный выход УЗС-1М (в соответствии с опросным листом) с помощью компьютера. На компьютере должно быть установлено программное обеспечение для конфигурирования, параметризации и диагностики счётчика «КТМ Smart Stream».
- 2.5.1.3 Включить УЗС-1М. После осуществления самотестирования, УЗС-1М перейдет в режим РАБОТА. Нажать кнопку «→→» на блоке обработки информации с индикацией или на рабочем поле компьютера. УЗС-1М перейдет в режим индикации расхода.
- 2.5.1.4 Проверить на индикаторе наличие нештатных ситуаций и показание расхода (при наличии движения жидкости в трубопроводе).
- 2.5.1.5 Установить произвольный расход жидкости в трубопроводе в диапазоне от Qmin до Qmax данного УЗС-1М и убедиться в том, что УЗС-1М показывает расход, показания объема изменяются в соответствии с расходом и убедиться в поступлении информации от УЗС-1М по задействованным выходам.
 - 2.5.1.6 Выполнить калибровку УЗС-1М:
 - Остановите поток жидкости в трубопроводе и убедитесь в его полной остановке:
 - проверьте закрытие запорной арматуры;
 - убедитесь в отсутствии движения жидкости (визуально или с помощью датчиков);
 - убедитесь, что труба заполнена измеряемой средой.
 - Выполните калибровку УЗС-1М с помощью программы KTM Smart Stream:
 - запустите программу и выберите режим калибровки.
 - следуйте инструкциям на экране для завершения процесса.
 - 2.5.1.7 Остальные параметры УЗС-1М настроены на заводе изготовителе.
 - 2.5.1.8 УЗС-1М готов к работе.
 - 2.5.2 Настройка монтажного комплекта УЗС-1М
- 2.5.2.1 После установки монтажного комплекта УЗС-1М на место эксплуатации произвести электромонтаж.
- 2.5.2.2 Работы по настройке УЗС-1М должен выполнять специалист, прошедший обучение на предприятии-изготовителе по правилам установки, монтажа и эксплуатации УЗС-1М.

- 2.5.2.3 Ввести в УЗС-1М параметры, измеренные и рассчитанные в соответствии требованиями инструкции РМТВ.26.000.00.0000.000ИМ1.
 - 2.5.2.4 Ввести в УЗС-1М параметры в соответствии с опросным листом.
 - 2.5.2.5 Выполнить пункты 2.5.1.2 2.5.1.8
 - 2.5.3 Просмотр информации с УЗС-1М
- 2.5.3.1 Просмотр информации с УЗС-1М можно осуществлять следующими способами (в зависимости от модификации УЗС-1М):
 - визуально на индикаторе УЗС-1М;
 - на компьютере через интерфейс RS-485;
 - на компьютере через локальную сеть предприятия.
- 2.5.3.2 Просмотр информации с УЗС-1М (версия с индикацией) осуществляется визуально на индикаторе УЗС-1М в соответствии с меню.
- 2.5.3.3 Просмотр информации с УЗС-1М непосредственно с помощью компьютера можно осуществить, подключив компьютер к интерфейсу RS-485 через преобразователь RS485 в USB УЗС-1М. При этом на компьютере должна быть установлена программа KTM Smart Stream и установлены одинаковые с УЗС-1М параметры связи.
- $2.5.3.4~{\rm K}$ одной линии связи последовательно можно подключить до 8 штук УЗС-1М. Линия связи экранированная витая пара. При этом, на самом удаленном УЗС-1М, необходимо на плате модуля вычислителя установить перемычку $R_{\rm II}$ 120 Ом. Длина линии связи не более 1000 м и уменьшается в условиях наличия внешних помех в местах прокладки линии. Для взрывозащищенного исполнения длина линии связи не более 500 м из-за потерь в барьере искрозащиты.
- 2.5.3.5 Скорость передачи данных выбирается экспериментально по условиям устойчивой связи компьютера с УЗС-1М.
- 2.5.3.6 Каждому УЗС-1М необходимо присвоить свой сетевой номер, зайдя в меню ИНТЕРФЕЙС каждого УЗС-1М. Если УЗС-1М не имеют индикации, то при первом опросе с компьютера соединенных в линию УЗС-1М, необходимо включать питание на них поодиночке, так как первоначально все УЗС-1М имеют сетевой номер 001. После опроса включенного прибора в нем устанавливается новый сетевой номер. После замены сетевого номера питание этого УЗС-1М можно не выключать, он уже не будет мешать связи с другими УЗС-1М.
- 2.5.3.7 Доступ к параметрам УЗС-1М может быть обеспечен с любого компьютера, подключенного к этой сети и имеющего программу KTM Smart Stream.
 - 2.5.3.8 Инструкция по настройке интерфейса токовой петли (HART-протокол)
 - 2.5.3.8.1 Подготовка к настройке:
 - подключите счетчик к ПК и запустите ПО SmartStream;
- в главном окне программы (рисунок 39) измените режим работы прибора, выбрав «Обслуживание» (рисунок 40). Этот режим предоставляет доступ к настройкам устройства.

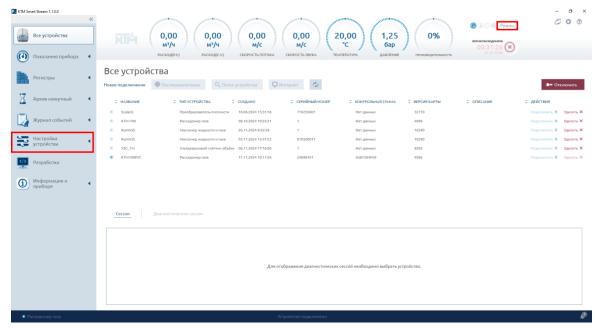


Рисунок 39 – Главное окно ПО SmartStream

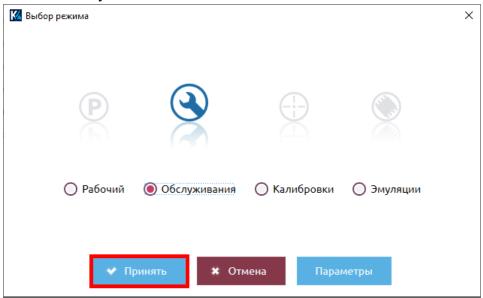


Рисунок 40 – Окно выбора режима работы

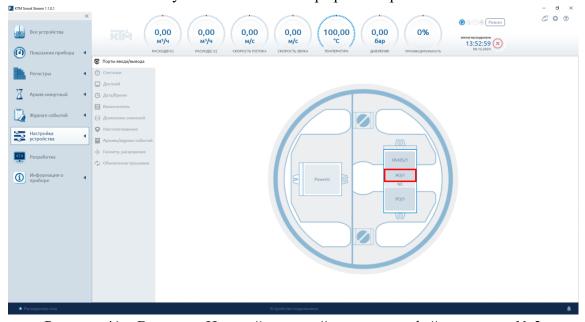


Рисунок 41 – Вкладка «Настройка устройства», интерфейсная плата № 3

- 2.5.3.8.2 Настройка аналогового выхода (токовая петля):
- нажмите на вкладку «Настройка устройства» (рисунок 39);
- перейти по кнопке «AO/1» в меню настройки параметров аналогового выхода (рисунок 41);
- в меню «Параметры аналогового выхода» (рисунок 42) задайте необходимые настройки. Примечание: Вкладка «Настройка устройства» может отличаться в зависимости от модели интерфейсной платы (1–5, 7).

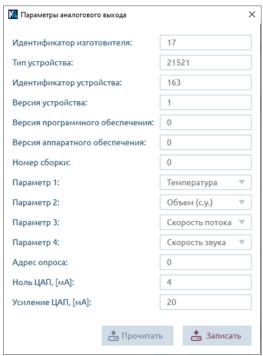


Рисунок 42 – Меню параметров аналогового выхода

- 2.5.3.8.3 Параметры, не подлежащие изменению (паспортные данные):
- идентификатор изготовителя;
- тип устройства;
- идентификатор устройства;
- версия устройства;
- версия ПО и аппаратного обеспечения;
- номер сборки;
- адрес опроса.
- 2.5.3.8.4 Настраиваемые параметры
- «Адрес опроса» (0–63):
- Если задано значение от 1 до 63, прибор переходит в режим работы с несколькими устройствами, фиксируя ток на уровне 4 мА.
 - Значение 0 соответствует одиночному устройству.
- «Параметр 1—4», позволяет выбрать передаваемые через токовый выход данные. Данная функция обеспечивает гибкую настройку вывода наиболее значимых параметров в соответствии с требованиями пользователя и условиями эксплуатации.

Параметры доступные для ввода в меню прибора, с соответствующими им единицами измерения, приведены в таблице 22:

Таблица 22 – Параметры доступные для вывода

47

Наименование параметра	Единицы измерения
Объемный расход в рабочих условиях	м3/ч
Объемный расход в стандартных условиях	м3/ч
Скорость потока	M/C
Скорость звука	M/C
Молярная масса	г/моль
Массовый расход	кг/ч
Плотность в рабочих условиях	кг/м3
Плотность в стандартных условиях	кг/м3
Температура	°C
Давление	бар
Суммарный объемный расход в рабочих условиях, прямой	м3
Суммарный объемный расход в рабочих условиях, обратный	м3
Суммарный объемный расход в стандартных условиях, прямой	м3
Суммарный объемный расход в стандартных условиях, обратный	м3
Суммарный массовый расход, прямой	кг
Суммарный массовый расход, обратный	КГ
Температура БОИ	°C

2.5.3.8.5 Калибровка токовой петли

Калибровка токовой петли осуществляется через вкладки «Ноль ЦАП [мА]» и «Усиление ЦАП [мА]». В данных вкладках задаются минимальное и максимальное значения измеряемого параметра, которые будут линейно преобразовываться в стандартный токовый сигнал 4...20 мА.

Порядок настройки:

- Перейдите во вкладку «Диапазоны значений» (рисунок 43).
- Установите границы измеряемого параметра:
 - Нижний диапазон значение, соответствующее 4 мА.
 - Верхний диапазон значение, соответствующее 20 мА.
- Нажмите «Записать» для сохранения настроек или «Прочитать» для загрузки текущих параметров.

Важно! При выходе параметра за установленные границы прибор формирует сигналы:

- Нижний предел (<4 мА) -3.8 мА.
- Верхний предел (>20 мА) -20,1-20,5 мА.

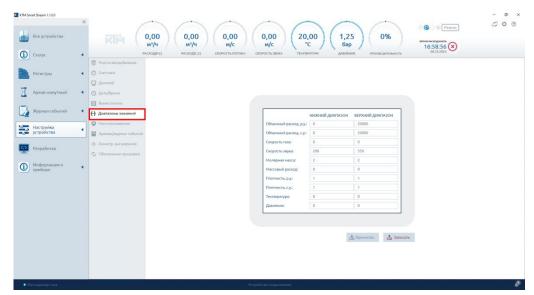


Рисунок 43- Вкладка «Диапазоны значений»

2.5.3.8.6 Рекомендации по эксплуатации:

- Регулярно проверяйте корректность установленных диапазонов.
- При изменении условий эксплуатации выполните повторную калибровку.
- Для диагностики используйте режим «Обслуживание».

2.5.3.9 Описание работы с программой KTM Smart Stream описано в документе «РМТВ.01.900.01.0100.000 99 KTM Smart Stream. Руководство пользователя».

2.6 Требования к теплоизоляции

При возникновении необходимости исключить нагрев поверхностей изделия, выше допустимых температур для требуемых температурных классов по ГОСТ 31610.0-2019 (IEC 60079-0:2017), вызванный температурой технологического процесса, допускается применять изоляцию первичных преобразователей.

При разработке мер по обеспечению изоляции первичных преобразователей необходимо руководствоваться требованиями, изложенными в документе «Свод правил. Тепловая изоляция оборудования и трубопроводов» СП 61.13330.2012. Разработанная изоляция должна предусматривать возможность извлечения датчика в направлении его установки в штуцер без перекосов и задеваний за изоляцию.

Для изделий с температурным исполнением t1 (от минус 45 °C до плюс 450 °C) и t7 (от минус 45 °C до плюс 550 °C) при проектировании и монтаже термоизоляции необходимо учитывать конструктивные особенности УЗС-1М. В данных исполнениях изделие оснащено радиатором для отвода тепла от приемопередатчиков, термоизоляция которого не допускается.

Варианты границ размещения теплоизоляционного слоя для температурного исполнения t1 и t7 приведены на рисунке 44.

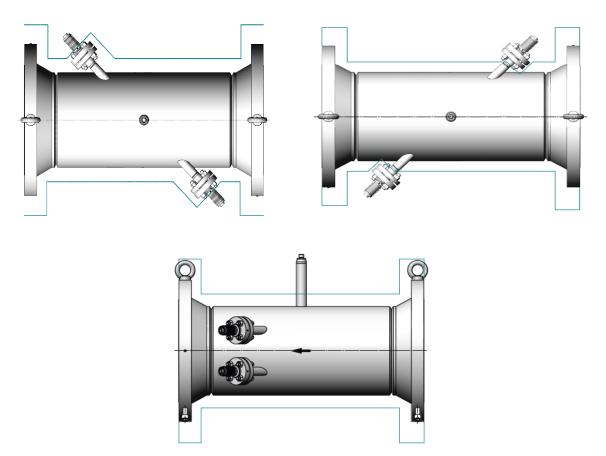


Рисунок 44 – границы размещения теплоизоляционного слоя УЗС-1M для температурных исполнений t1 и t7.

КД-У3С-1М-07-038

- 3 Техническое обслуживание
- 3.1 Проверка технического состояния
- 3.1.1 Проверка технического состояния УЗС-1М производится в соответствии с таблицей 23 с целью установления пригодности его для дальнейшей эксплуатации. Таблица 23 Техническое обслуживание

Проверяемый параметр	Периодичность	Проверяющий
Наличие заземления, пломб, и маркировок, надежность крепления, отсутствие повреждений изоляции соединительных кабелей	1 раз в месяц	Персонал КИП или организация, обслуживающая УЗС-1М
Дисплей должен светиться и на него должна выводиться информация	Ежедневно	Дежурный персонал и сообщает персоналу КИП, или в организацию, обслуживающую УЗС-1М
Наличие нештатных ситуаций	Ежедневно	Дежурный персонал и сообщает персоналу КИП, или в организацию, обслуживающую УЗС-1М
Проверка напряжения внутреннего источника питания	При подготовке УЗС- 1М к очередной поверке	Персонал КИП или организация, обслуживающая УЗС-1М
Калибровка нуля расхода в соответствии с 2.5.1.6	1 раз в год и при вводе УЗС-1М в эксплуатацию после поверки	Персонал КИП или организация, обслуживающая УЗС-1М

- 3.1.2 Проверку технического состояния и ремонт должен производить специалист службы контрольно-измерительных приборов (КИП) предприятия, прошедший обучение работе с УЗС-1М на предприятии-изготовителе и имеющий доступ к работе с напряжением до 1000 В.
 - 3.2 Поверка
- 3.2.1 Поверка УЗС-1М осуществляется в соответствии с методикой поверки с интервалом 4 года.

важно!

Результаты поверки заносятся в паспорт на УЗС-1М и заверяются подписью поверителя. При положительных результатах поверок изделие пломбируется поверителем.

- 4 Текущий ремонт
- 4.1 Допуск персонала к ремонту
- 4.1.1 К ремонту допускаются специалисты КИПиА, прошедшие обучение на заводеизготовителе по работе УЗС-1М и имеющие допуск к работе с напряжением до 1000 В.
 - 4.2 Замена ПП
- 4.2.1 При замене ПП необходимо предварительно освободить трубопровод от жидкости до уровня ниже места установки ПП.
 - 4.2.2 Порядок работ:
 - 4.2.2.1 Отсоединить разъём кабельного ввода (Рисунок 45).
 - 4.2.2.2 Открутить 4 винта, фиксирующие крышку к штуцеру (рисунок 45).



Рисунок 45 – демонтаж винтов

4.2.2.3 Отсоединить крышку и снять прокладку, указанную на рисунке 46.

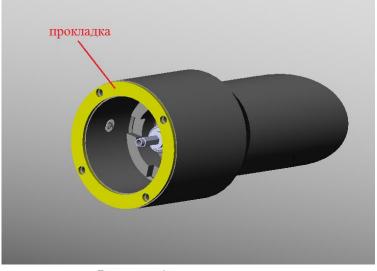


Рисунок 46 – прокладка

4.2.2.4 Открутить разъём и отсоединить провод в соответствии с рисунком 47.

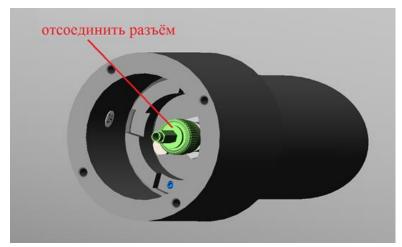


Рисунок 47 – разъем сенсора

4.2.2.5 Выкрутить 2 винта установочных, фиксирующих гайку для исключения откручивания (рисунок 48).

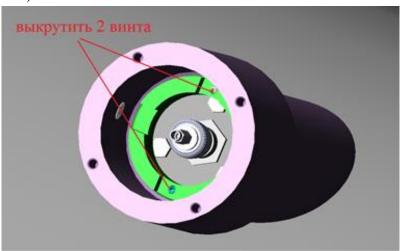


Рисунок 48 – винты установочные

4.2.2.6 Открутить гайку, указанную на рисунке 49.

Рисунок 49 – гайка

4.2.2.7 Отвернуть 3 винта, фиксирующих крышку сенсора, указанных на рисунке 50.

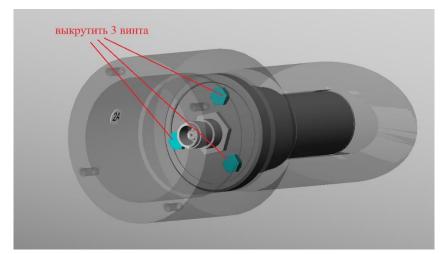


Рисунок 50 – винты фиксации крышки

4.2.2.8 Снять шайбу совместно с разъёмом (рисунок 51)

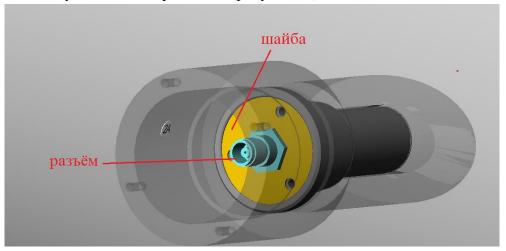


Рисунок 51 – шайба сенсора с разъемом

4.2.2.9 Установить вместо шайбы ключ Т88.515.0000.00 и зафиксировать на 3 болта к втулке резьбовой, как показано на рисунке 52.

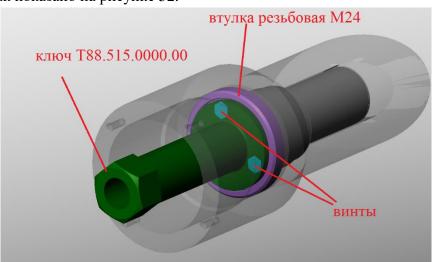


Рисунок 52 – установка ключа для монтажа

- 4.2.2.10 Открутить втулку резьбовую при помощи ключа.
- 4.2.2.11 При помощи пинцета (на разжим) изъять втулку, указанную на рисунке 53.

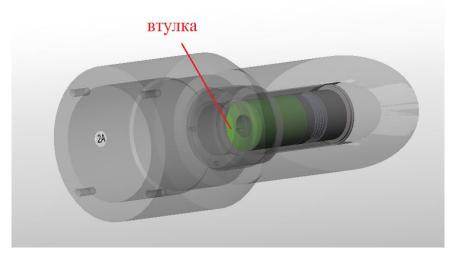


Рисунок 53 – втулка

4.2.2.12 При помощи пинцета или зажима изъять из внутренней полости втулки вместе с пружинами тарельчатыми, указанными на рисунке 54.

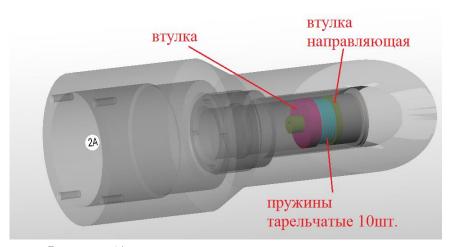


Рисунок 54 – пружины тарельчатые и втулки

4.2.2.13 Демонтировать при помощи пинцета втулку фторопластовую, указанную на рисунке 55 и пьезоэлемент, указанный на рисунке 56Рисунок .

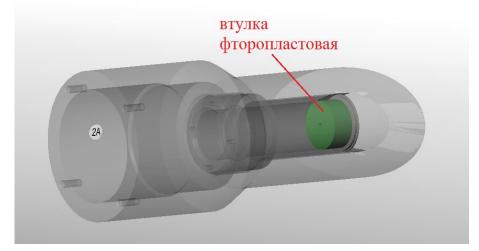


Рисунок 55 – втулка фторопластовая

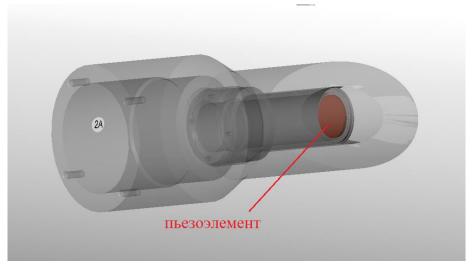


Рисунок 56 – пьезоэлемент

- 4.2.2.14 После демонтажа всех составляющих приемопередатчика, необходимо внутреннюю полсть стакана тщательно протереть от смазки чистой сухой салфеткой.
 - 4.2.2.15 Произвести сборку монтажного комплекта:
 - а) пьезоэлемент совместно с проводом 1 шт;
 - b) втулка фторопластовая 1 шт.;
 - с) втулка направляющая 1 шт.;
 - d) пружина тарельчатая 10 шт.;
 - е) втулка 1 шт.

как показано на рисунках 57,58.

Рисунок 57 – эскиз сборки монтажного комплекта

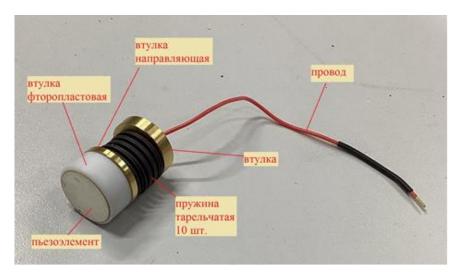


Рисунок 58 – монтажный комплект

- 4.2.2.16 При сборке монтажного комплекта важно обратить внимание на правильность установки (ориентации) пружин тарельчатых. Пружины должны быть обращены выпуклыми сторонами относительно друг друга как показано на рисунке 57.
 - 4.2.2.17 Сборку преобразователя производить в обратном порядке.
- 4.2.2.18 На поверхность пьезоэлемента нанести жидкость полиметилсилоксановую ПМС-60000 тонким слоем, как показано на рисунке 59.

Рисунок 59 – пьезоэлемент со смазкой

- 4.2.2.19 Убедиться в отсутствии во внутренней полости расположения сенсора мусора и остатков смазки.
 - 4.2.2.20 Установить монтажный комплект в сборе, как показано на рисунке 60.

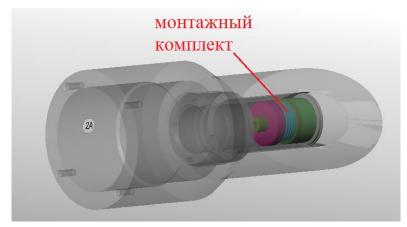


Рисунок 60 – установка монтажного комплекта

4.2.2.21 Установить втулку (рисунок 61).

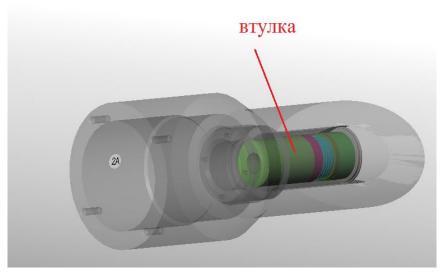


Рисунок 61 – установка втулки

4.2.2.22 Посредством ключа завернуть втулку резьбовую с моментом затяжки 20 H/м. (рисунок 62).

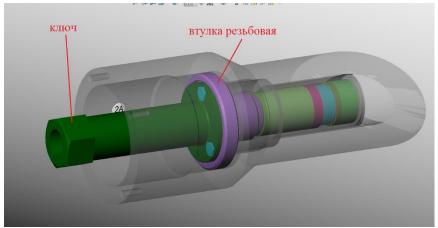


Рисунок 62 – установка втулки резьбовой

- 4.2.2.23 Открутить 3 винта, фиксирующих ключ.
- 4.2.2.24 Подключить пин провода к разъёму и закрепить шайбу на 3 винта (рисунок 63).

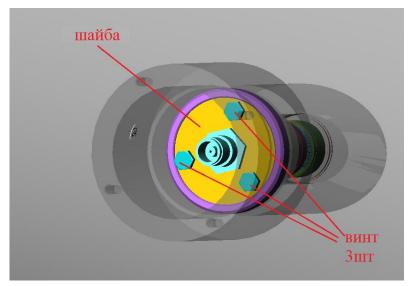


Рисунок 63 – монтаж шайбы с разъемом

4.2.2.25 Закрутить гайку до упора и зафиксировать её от проворота двумя установочными винтами, указанными на рисунке 64.

Рисунок 64 – гайка и винты установочные

- 4.2.2.26 Установить прокладку на штуцер.
- 4.2.2.27 Подключить кабель и установить крышку.
- 4.2.2.28 Зафиксировать крышку на 4 винта, как показано на рисунке 65.

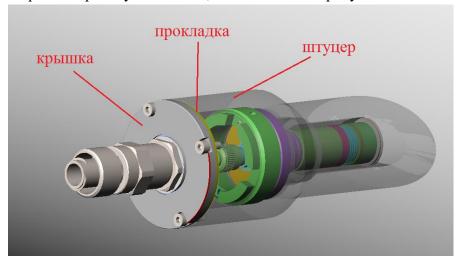


Рисунок 65 – установка крышки

- 4.2.3 Проверка работоспособности ПП
- 4.2.3.1 Подключить приемопередатчик к LCR тестеру и проверить емкость преобразователя. Емкость рабочего сенсора должна соответствовать $4\pm0,2$ nF. Если данный кд-узс-1м-07-038

параметр не выдержан, то сборку сенсора необходимо совершить заново.

- 4.2.3.2 Для полной проверки прибора необходимо произвести режим сканирования в программе Smart Stream.
 - 4.2.3.3 Проверку производить с заполненным средой расходомером.
 - 4.2.3.4 Установить расход 0, при этом давление должно быть постоянным.

Производительность 0 от 80% мин.

Для настройки лучей необходимо провести режим сканирования.

Режим сканирования: AGC mode=0

- 0 Ручной режим;
- 1 Автоматический режим по уровню;
- 2 Автоматический режим по качеству;
- 3 Режим сканирования среды;
- 4.2.3.5 Выбрать вкладку «запись регистров», создать новую запись по времени на 20-25 мин и выбрать нужные регистры для сканирования, запустить запись регистров, после заменить AGC mode=3 на 1.

Необходимые регистры:

(1069) ram.mp1.row1.AmpUP	(1260) ram.row1.PW_UP
(1071) ram.mp1.row1.AmpDWN	(1262) ram.row1.PW_DWN
(1094) ram.mp1.row2.AmpUP	(1264) ram.row2.AGCUP
(1096) ram.mp1.row2.AmpDWN	(1265) ram.row2.AGCDWN
(1258) ram.row1.AGCUP	(1266) ram.row2.PW_UP
(1259) ram.row1.AGCDWN	(1268) ram.row2.PW_DWN

4.2.3.6 Для записи регистра нужно нажать кнопку «Создать запись» во вкладке «Запись регистров». В открывшемся окне заполнить необходимые графы и выбрать нужный регистр для записи. Нажать кнопку «Создать» (рисунок 66).

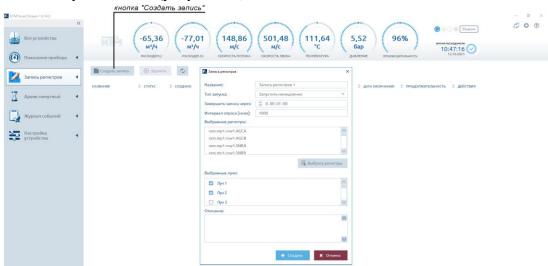


Рисунок 66 – запись регистров.

КД-УЗС-1М-07-038

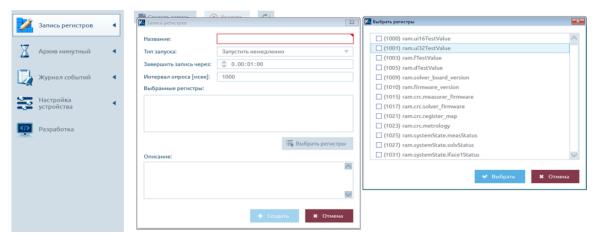


Рисунок 67 – окно записи регистров

- 4.2.3.7 По окончанию записи регистров, перевести AGC mode со значения 3 на значение 1.
- 4.2.3.8 После завершения сканирования скачать запись регистров и построить графики для каждого луча, ram.row1 AGCUP ram.row1.PW_UP. Вывести среднее и записать в регистр fram.mp1.row1 AGCUP. Построить еще 2 графика ram.row1.AGCDWN и ram.row1.PW_DWN вывести среднее значение и записать в регистр fram.mp1.row1.AGCDW.
- 4.2.3.9 График рабочего сенсора должен выглядеть как на рисунке 68. Подобный график свидетельствует о правильной установке приемопередатчика. Пример для не работающего приемопередатчика на рисунке 69.

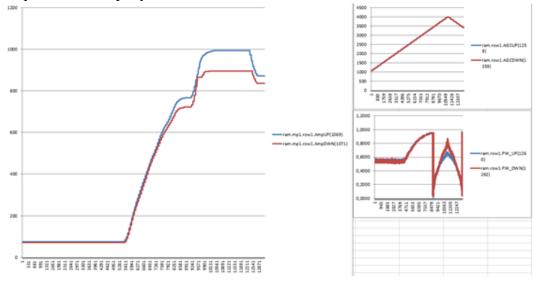


Рисунок 68 – пример графика рабочего сенсора (луча)

КД-УЗС-1М-07-038

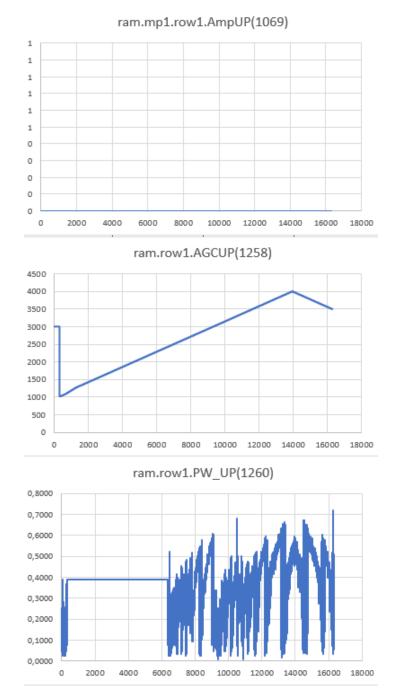


Рисунок 69 – пример графика неработающего сенсора (луча).

- 4.3 Замена элемента питания часов реального времени.
- 4.3.1 Внутри блока БОИ установлен элемент питания RS2450N производства компании Renata, химическая формула Li/MnO₂, срок хранения 12 лет, напряжение 3 В, заявленная ёмкость 540 мA, максимальный рабочий ток разряда 3 мA.
 - 4.3.2 Не допускается замена элемента питания при наличии взрывоопасной газовой среды.
 - 4.3.3 Замена элемента питания приводит к сбросу часов реального времени.
- 4.3.4 Замена элемента питания приводит к снятию пломбы производителя и пломбы о поверке прибора. Для замены элемента питания необходимо обратиться к производителю или в авторизованный сервисный центр.
- 4.3.5 После замены элемента питания часов произвести пломбирование БОИ. Занести дату и время замены элемента питания в паспорт на расходомер.
- 4.3.6 После замены элемента питания часов провести поверку прибора в соответствии с МП 208-033-2022.

- 4.4 Перечень неисправностей
- 4.4.1 Перечень возможных неисправностей приведен в таблице 24.

Таблица 24 – Перечень неисправностей

Наименование неисправности,	Вероятная	Метод					
внешнее проявление	причина	устранения					
1. УЗС-1М не включается при	Перегорела вставка плавкая	Взять из ЗИПа и заменить					
подаче на него питания							
2. Светится индикатор	Обрыв соединительных	Проверить линию связи с ПП					
РЕЖИМ	кабелей						
	Отказ ПП	Заменить ПП					
	Неисправность блока	Ремонт в сервисной службе,					
	обработки информации	обслуживающей данный район или на					
		заводе-изготовителе					
3. На цифровом индикаторе	Неисправность блока	Ремонт на заводе-изготовителе или в					
отсутствует информация	обработки информации	сервисной службе, обслуживающей данный					
		район					
4. УЗС-1М не реагирует на	Сбой в программе работы	Выключить УЗС-1М и повторно включить.					
нажатие кнопок	процессора	При повторении "зависания" требуется					
		ремонт на заводе-изготовителе или в					
		сервисной службе, обслуживающей данный					
		район					

КД-У3С-1М-07-038

- 5 Хранение и утилизация
- 5.1 Условия хранения
- 5.1.1 Условия хранения УЗС-1М должны удовлетворять следующим требованиям:
 - относительная влажность воздуха должна быть менее 60 %;
 - температура воздуха от минус 50 °C до плюс 70 °C.
- 5.1.2 Не допускается в складском помещении наличие разного рода щелочей, кислот, а также проникновение в помещение вредных для изделия паров и газов. Помещение должно быть оборудовано приборами для измерения влажности и температуры воздуха.
- 5.1.3 Гарантийный срок хранения на складе: 6 месяцев с даты поставки, если иное не указано в договоре поставки.
 - 5.2 Утилизация УЗС-1М
- 5.2.1 УЗС-1М не представляет опасности для жизни, здоровья людей и окружающей среды после окончания срока службы. Утилизация УЗС-1М производится без принятия специальных мер защиты окружающей среды.
- 5.2.2 Утилизация УЗС-1М или вышедших из строя его составных частей может производиться любым доступным потребителю способом.

6 Транспортирование

УЗС-1М разрешается транспортировать железнодорожным (в крытых вагонах), закрытым автомобильным, водным (в трюмах), воздушным (в герметичном отсеке) транспортом, в соответствии с правилами перевозки грузов, действующими для данного вида транспорта.

Во избежание повреждений упаковки в транспортном средстве, упакованный прибор УЗС-1М необходимо закрепить внутри транспортного средства.

Укладывать упакованные изделия в штабели следует в соответствии с правилами и нормами, действующими на соответствующем виде транспорта.

Погрузочно-разгрузочные работы должны производиться без резких толчков и ударов и обеспечивать сохранность тары и упаковки.

Климатические условия при транспортировании УЗС-1М:

- температура воздуха при транспортировании от минус 50 °C до плюс 55 °C;
- относительная влажность воздуха до 98% при температуре плюс 35°C;
- атмосферное давление от 84 до 107 кПа.

Поставка УЗС-1М сопровождается упаковочным листом, эксплуатационными и товаросопроводительными документами, уложенными в герметичный пакет и (или) пакет из полиэтиленовой пленки.

По согласованию с производителем допускается отправка документации почтой.

Все обработанные неокрашенные поверхности (резьбы крепежных изделий, детали корпуса и т.д.) законсервированы в необходимом для сохранности объеме в соответствии с требованиями ГОСТ 9.014-78.

КД-УЗС-1М-07-038

Приложение А (справочное) Опросный лист УЗС-1М

Информация о процессе: Жидкость
Диаметр трубопровода, DN
Максимальное давление, МПа
Температура жидкости (мин., макс.), °С
Кинематическая вязкость жидкости, м 2 /с (сСт) при температуре $^{\rm o}$ С
Поток жидкости (непрерывный, импульсный)
Расход непрерывный (мин., макс.), м 3 /ч
Расход импульсный (мин., макс.), м ³ /ч
Минимальный единичный объем W (при импульсном расходе), м3
Наличие газовой фазы или твердых примесей, %
Обозначение расходомера (в соответствии с таблицей А.1)
Исполнение уплот. поверхности фланцев по ГОСТ 33259
Ответные фланцы (2 шт.); да (материал) / нет
Длина соединительного кабеля (разнесенная версия), м
Направление потока в трубопроводе с точки расположения оператора
Комплектование источником питания 24 В
Количество расходомеров, шт
Прочие требования
Предприятие-заказчик:
Адрес:
Контакт. тел., факс, E-mail:
ФИО, должность исполнителя:
Проектная организация:

Контактные данные: Телефон/факс: (846) 202-00-65

E-mail: info@ktkprom.com

КД-У3С-1М-07-038

Приложение А.1 (справочное)

Типовой код изделия

Таблица А.1 – Структура условного обозначения УЗС-1М

Tuesninga I i.i e	труктура условног	о ооозначения у 5С-11		****	****	****	****	****	****	***		***	****	***	****
Название расходомера-сч	нетчика:	Типовой код: УЗС-1М.	XX.	XX.	XX.	XX.	XX.	XX.	XX.	X.	X.	X.	XX.	X	XX
Модель УЗС-1М: 11 (1 луч, 1 КИ)		•				Ì					Ì				
21 (2 луча, 1 КИ)															
31 (3 луча, 1 КИ) 12 (1 луч, 2 КИ)						ļ	ļ				ļ				
Взрывозащищенное темп t1 (от -45 °C до +450 °C)	пературное исполнение: 1	Не взрывозащищенное температурное исполнение:													
t2 (от -45 °C до +300 °C)	t	7 (от -45 °C до +550 °C)													
t3 (от -200 °C до +180 °C) t4 (от -60 °C до +135 °C)															
t5 (от -60 °C до +100 °C) t6 (от -60 °C до +85 °C)															
Максимальная вязкость с V1 (до 300 сСт)	ереды:				,	Ì	ĺ				İ		i		
V2 (до 1000 cCт)						J	ļ				ļ	ļ			
Номинальный диаметр, мм:	Номинальный диаметр, ":														
A1 (8 MM) A2 (10 MM)	N1 (½") N2 (¾") N3 (1")														
A3 (15 MM) A4 (20 MM)	N3 (1") N4 (1¼")														
A5 (25 MM) A6 (32 MM)	N5 (11/4")														
A7 (40 mm) A8 (50 mm)	N6 (2") N7 (2½") N8 (3") N9 (3½")														
B1 (65 MM) B2 (80 MM)	N9 (3½") M1 (4")														
B3 (100 мм)	M2 (5")														
B4 (125 MM) B5 (150 MM)	M3 (6") M4 (8")														
B6 (200 mm) B7 (250 mm)	D1 (10" без ИУ) D2 (12" без ИУ) D3 (14" без ИУ)														
B8 (300 mm) B9 (350 mm)	D4 (16" без ИУ)														
C1 (400 MM) C2 (500 MM)	D5 (18" без ИУ) D6 (20" без ИУ)														
C3 (600 mm) C4 (700 mm)	D7 (24" без ИУ)														
C5 (800 MM) C6 (900 MM)															
C7 (1000 MM) C8 (1200 MM)															
С9 (1400 мм, без ИУ) Давление жидкости	Давление жидкости										ļ		i		
по ГОСТ 26349:	по ASME B16.5:										ļ	ļ	l I		
P0 (PN10) P1 (PN16)	C1 (Class150) C2 (Class300														
P2 (PN25) P3 (PN40)	C3 (Class400) C4 (Class600)														
P4 (PN63) P5 (PN100)	C5 (Class900) C6 (Class1500)														
P6 (PN160) P7 (PN200)	C7 (Class2500)														
P8 (PN250) P9 (PN400)															
Исполнение фланца, согл ГОСТ 33259	пасно таблицы кодировки DIN EN1092-1	*: ASME B16.5									ļ				
1B (B) 1C (C)	2B (B) 2C (C)	RF (RF) SM (SM)	00 (6	ез флан	щевое і	исполне	ение)								
1D (D) 1E (E)	2D (D) 2E (E)	LM (LM) SF (SF)		1			,								
1F (F)	2F (F)	LF (LF)													
1J (J)		ST (ST) LT (LT)													
		SG (SG) LG (LG)													
Тип интерфейса и токовь	лй выхол:	RJ (RJF)									ļ	-			
I1 (RS485, 4-20 MA+HAR I2 (RS485, 4-20 MA+HAR	T Master, Impulse)	Macter)													
I3 (RS485, 4-20 MA+HAR	T Slave, Impulse)	iviusior)													
I4 (Ethernet Slave, HART I5 (2xRS485, Impulse) I7 (RS485, 4-20 MA + HA	Master, Impulse)	DTCI I I)													
Материал КИ:	K i Master, 4-20 MA + HA	K i Slave, impulse)								l	1		<u> </u>		
A (12X18H10T) B (09Γ2C)															
C (CT.20)															
D (316L) E (304 S.S)															
F (13ΧΦΑ) G (08Χ18Η10)															
H (20Х3МВФ) I (A333 Gr.6)															
J (A352 Gr.LCC) K (AISI 321)															
L (AISI 304L) M (17Γ1C)															
N (16Mn) O (C22)															
P (Сталь 3) Q (Q235C)															
Конструктивное исполне	ние:										J	İ			
К (Компактная версия) Р (Разнесенная версия) М (Монтомин в компактия)	m)														
М (Монтажный комплект Д (С дублированием 1шт	т. КИ и 2 шт. БОИ)]			
Индикация: I (при наличии индикаци															
0 (индикация отсутствует	τ)												J		l

14 (С GSM-модемом и конфигурируемым дискретным входом)
15 (С GSM-модемом и аналоговым выходом)
16 (С конфигурируемым дискретным входом и аналоговым выходом)
17 (С GSM-модемом, конфигурируемым дискретным входом и аналоговым выходом)

Выносной модуль
00 (Отсутствует в комплектации)
1X (Присутствует в комплектации)
11 (С GSM-модемом)
12 (С конфитурируемым дискретным входом)
13 (С аналоговым выходом)
Устройство обогрева для БОИ
0 (Отсутствует в комплектации)

1 (Присутствует в комплектации)

П (присутствует в комплектации)

Взрывозащищенное исполнение:

Ех (при наличии взрывозащиты)

00 (взрывозащита отсутствует, кроме оболочки КТМ-1)

01 (взрывозащищенное исполнение с внешними барьерами искрозащиты)

02(взрывозащищенное исполнение с внутренними барьерами искрозащиты)

* - Кодировка фланцев показана в таблице 7

КД-УЗС-1М-07-038

Приложение Б (справочное) Габаритные размеры УЗС-1М

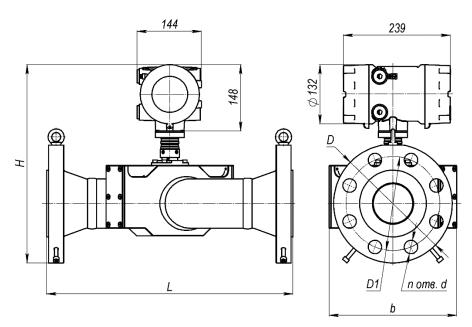


Рисунок Б.1 – Габаритные размеры УЗС-1М

Таблица Б.1 – Габаритные и присоединительные размеры, масса для УЗС-1М

DN	PN, МПа	L, мм	Н, мм	D, мм	D1, мм	d, мм	n	b, мм	М, кг					
	1,6								21,8					
	2,5	400		160	125	18			21,5					
	4		383				4		22,5					
50	6,3	400	363	175	135	22	4	240	26,2					
	10			195	145				28,3					
	16					26			29,2					
	25	450	385	200	150		8		33,8					
	1,6						4		25,2					
	2,5	450	383	180	145	18			26,3					
	4	450							26,3					
65	6,3		393	200	160	22	8	247	31,6					
	10	500	403	220	170		0		36,8					
	16		403	220		26			37,9					
	25		407	230	180				49,2					
	1,6								29,6					
	2,5	450	394	195	160	18			30,2					
	4]		30,9					
80	6,3		404	210	170	22	8	259	35,8					
	10	500	414	230	180	26	26		41,5					
	16								42,6					
	25	550	433	255	200	30			60,1					
	1,6		417	215	180	18			36,6					
	2,5	500	424	230	190	22	22		40,0					
	4								41,7					
100	6,3		434	250	200	26	8	284	48,5					
	10	550	550	550	550	550	550	550 442	265	210	30			57,8
	16								58,2					
	25	600	502	300	235	33			85,8					

КД-У3С-1М-07-038

Продолжение таблицы Б.1

DN	PN, МПа	L, мм	Н, мм	D, мм	D1, мм	d, мм	n	b, мм	М, кг
	1,6		444	245	210	18			47,7
125	2,5	500	157	270	220	26			53,2
	4		457	270	220	26	8		54,7
	6,3		469	295	240	30	0	307	68,9
	10	600	477	210	250	22			81,7
	16		4//	310	250	33			84,9
	25	650	500	340	275	33	12		126,7
	1,6		475	280	240	22			57,9
	2,5	550	485	300	250	26	8	332	66,7
	4		463	300	230	20	0		67,9
150	6,3	600	505	340	280				93,0
	10	650	510	350	290	33	12		108,4
	16		510						112,8
	25	700	538	390	320	36			169,0
	1,6	600	533	335	295	22			88,9
	2,5	000	545	360	310	26			100,4
	4	650	553	375	320	30			114,8
200	6,3	700	568	405	345	33	12	385	143,8
	10	750	500	420	260	20			178,3
	16	750	580	430	360	39			188,2
	25	850	619	485	400	42			289,0

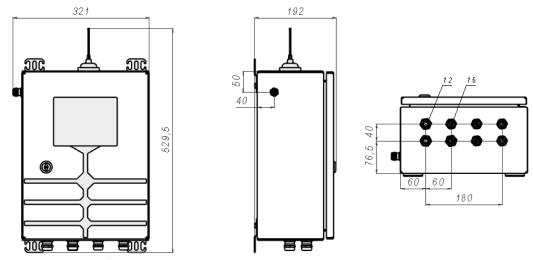
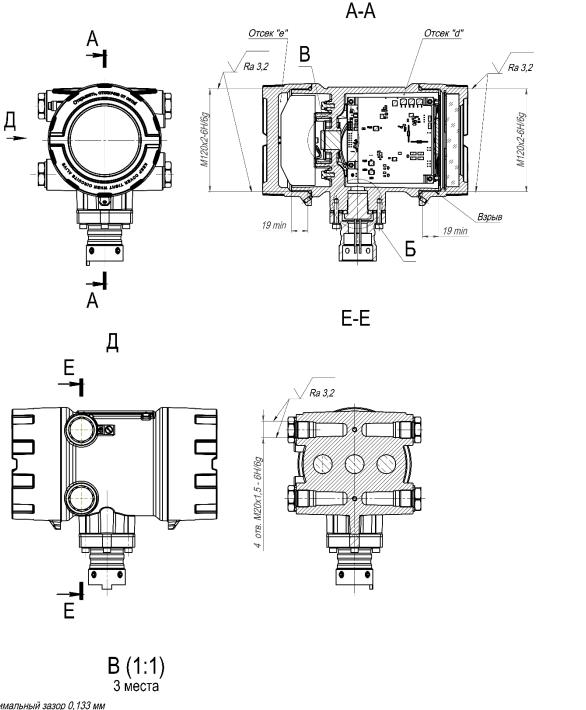
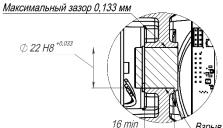
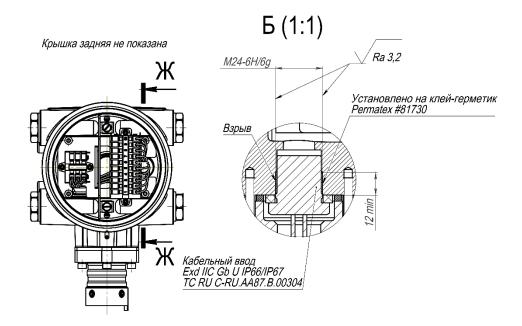




Рисунок Б.2 – Габаритные и присоединительные размеры модуля выносного

КД-У3С-1М-07-038

Приложение В (справочное) Чертежи средств взрывозащиты



- Размеры для справок. Чертеж взрывозощиты. Свободный объем отсека "d" без учета каркаса с платами V=1183,3см 3 , с учетом каркаса с платами V=1068,2 см 3 .
- Испытательное давление 5,0 МПа.
 Переходное сопротивление между контактирующими поверхностями корпусных деталей и деталей заземления не более 0,1 Ом.

Рисунок В.1 - БОИ в оболочке КТМ-1. Чертеж средств взрывозащиты

КД-УЗС-1М-07-038 71

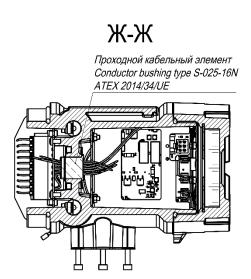


Рисунок В.2 - БОИ в оболочке КТМ-1. Чертеж средств взрывозащиты

КД-У3С-1М-07-038

Версия 1.8 РМТВ.26.000.00.0000.000РЭ

Приложение Г (справочное) Схемы электрические искробезопасных цепей

Блок обработки информации (Лайт)

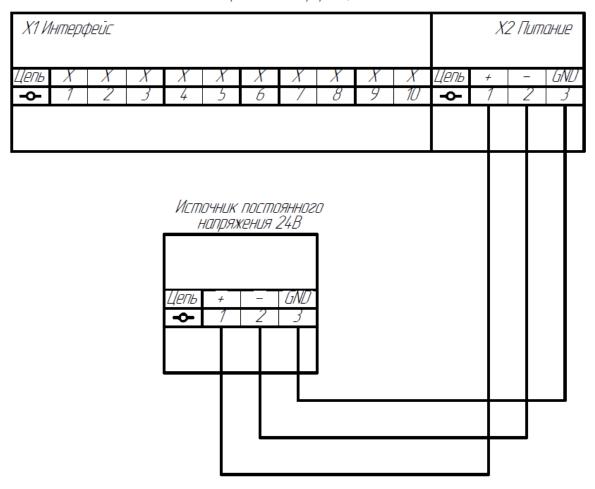


Рисунок $\Gamma.1$ – Подключение источника питания к БОИ

КД-У3C-1M-07-038

Версия 1.8 PMTB.26.000.000.0000.000PЭ

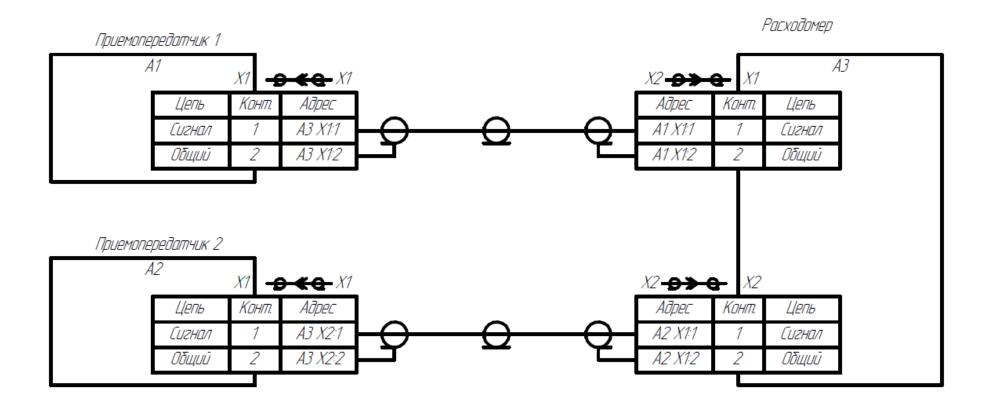


Рисунок Г.2 - Схема электрическая соединений (Э4) счетчика УЗС-1М (1 луч)

PMTB.26.000.00.0000.000PЭ

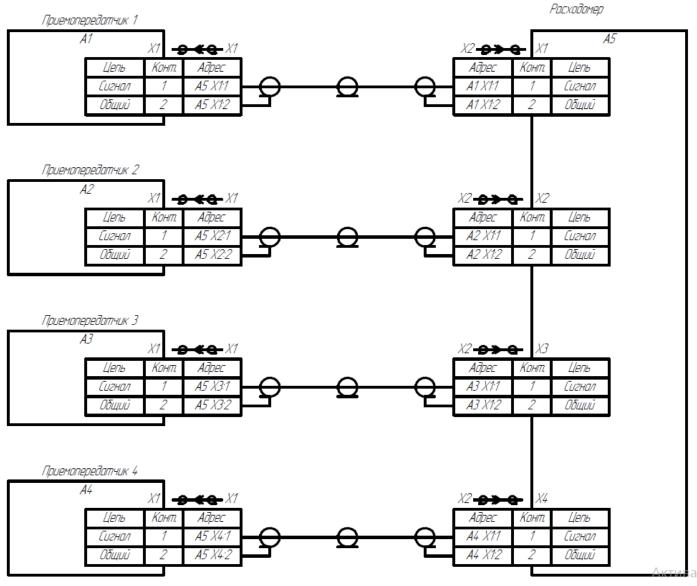


Рисунок Г.3 - Схема электрическая соединений (Э4) счетчика УЗС-1М (2 луча)

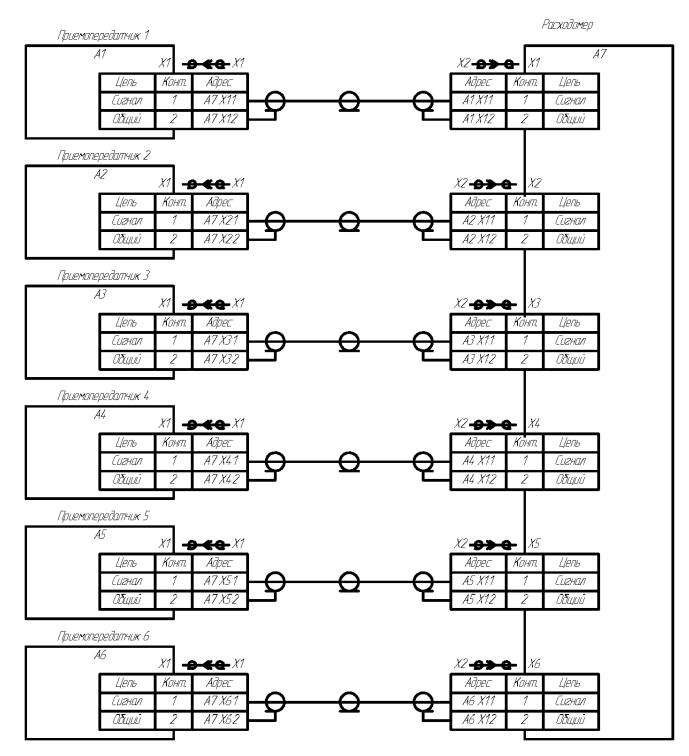
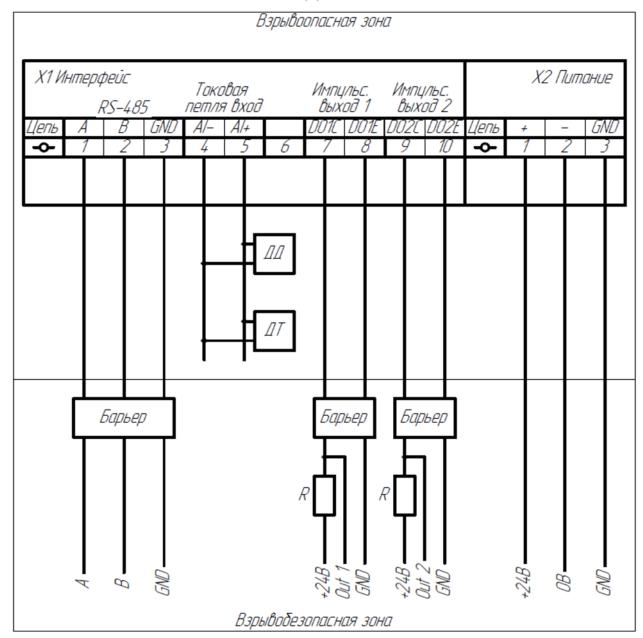
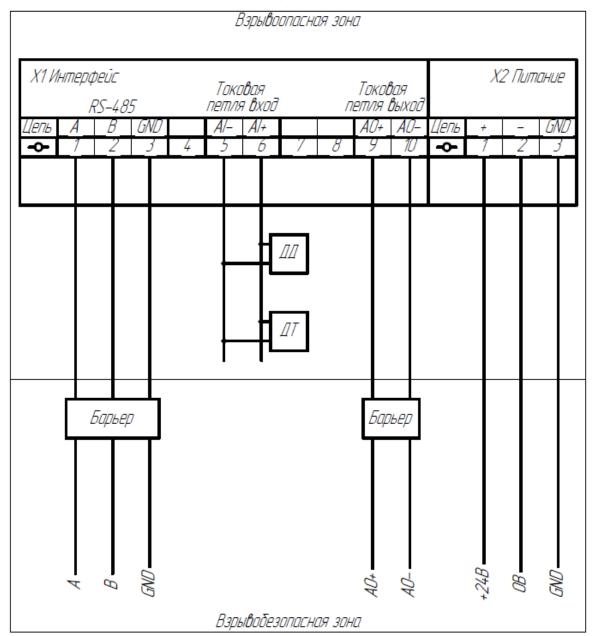



Рисунок Г.4 - Схема электрическая соединений (Э4) счетчика УЗС-1М (3 луча)

КД-УЗС-1М-07-038 76

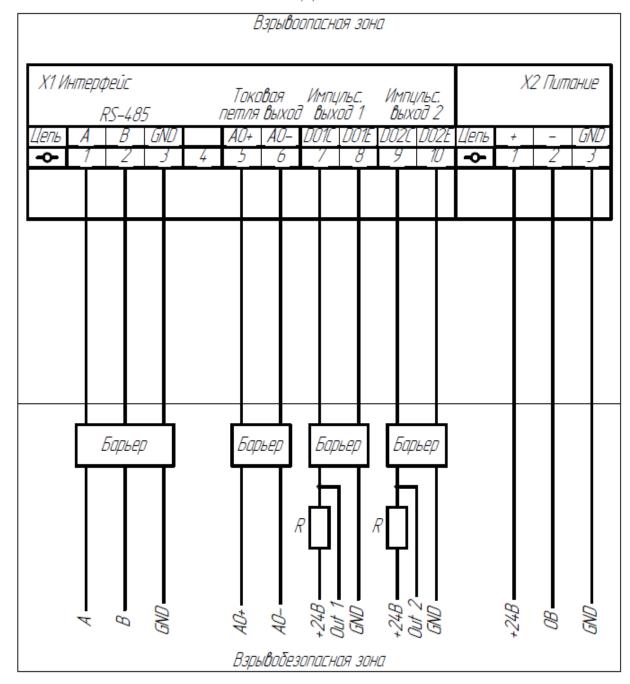

ДД - датчик давления

ДТ – датчик температиры

R = 1kOm 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одну активную петлю

Рисунок Г.5 – Схема электрическая подключения (Э5) с внешними элементами искрозащиты БОИ (вариант 1)


ДД – датчик давления

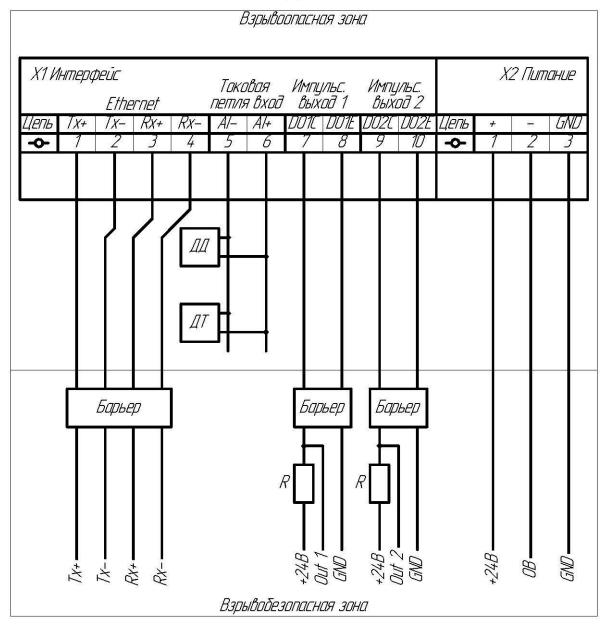
ДТ – датчик температуры

R = 1kOm 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одну активную петлю

Рисунок Γ .6 — Схема электрическая подключения (Э5) с внешними элементами искрозащиты БОИ (вариант 2)

ДД – датчик давления


ДТ – датчик температуры

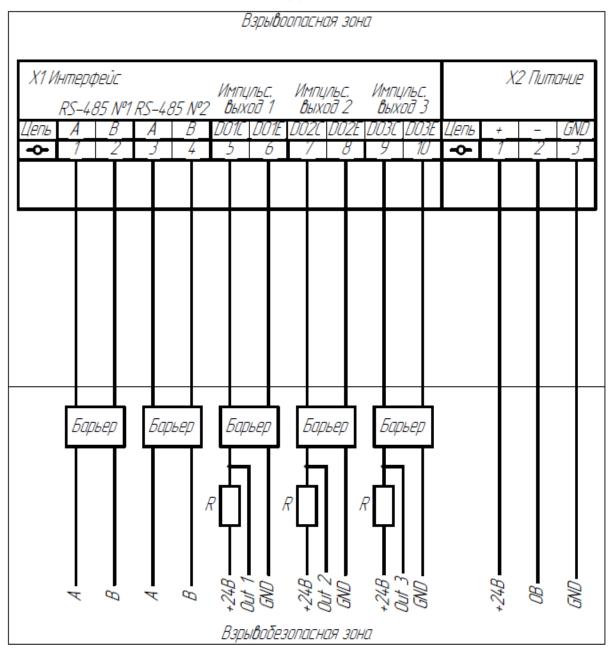
R = 1kOm 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одну активную петлю

Рисунок Г.7 — Схема электрическая подключения (Э5) с внешними элементами искрозащиты БОИ (вариант 3)

Интерфейс №4

ДД – датчик давления

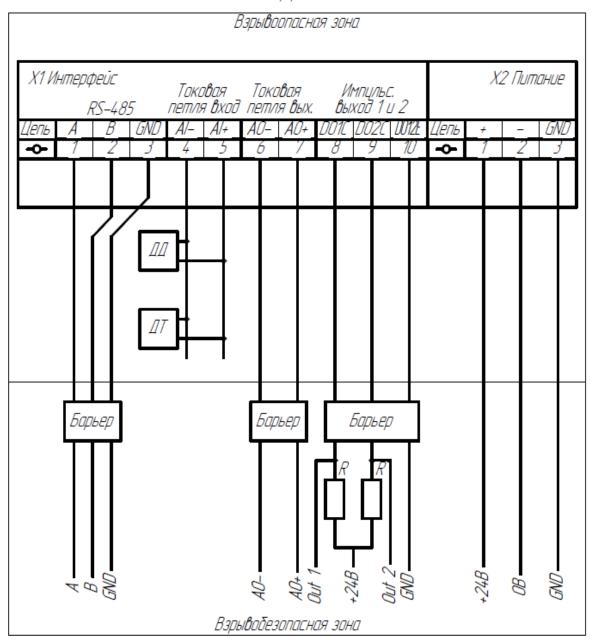

ДТ – датчик температуры

R = 1kOm 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одну активную петлю

Рисунок Г.8 – Схема электрическая подключения (Э5) с внешними элементами искрозащиты БОИ (вариант 4)

Интерфейс №5

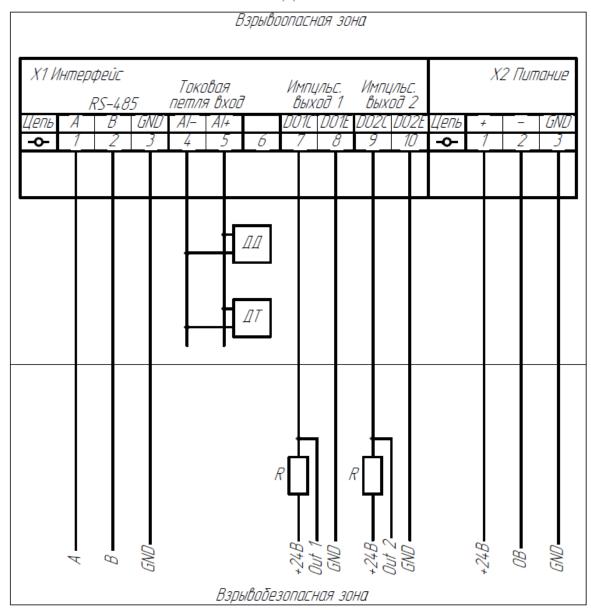

ДД – датчик давления

ДТ – датчик температуры

R = 1kOm 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одну активную петлю

Рисунок Г.9 – Схема электрическая подключения (Э5) с внешними элементами искрозащиты БОИ (вариант 5)

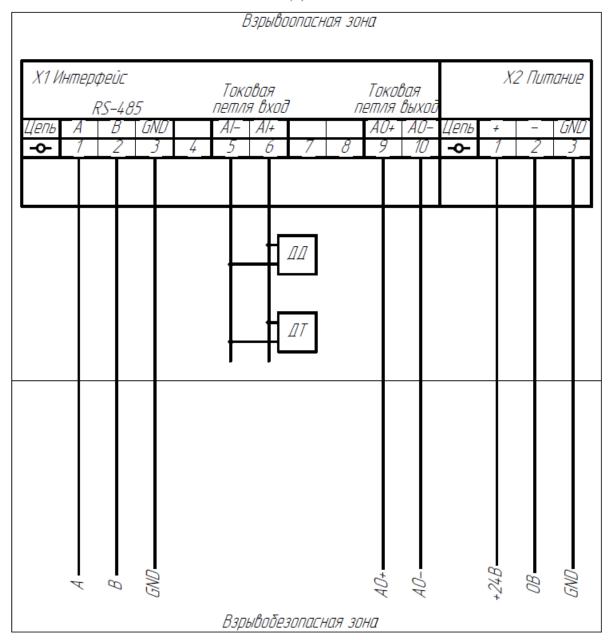

ДД – датчик давления

ДТ – датчик температуры

R = 1k0m 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одну активную петлю

Рисунок Г.10 – Схема электрическая подключения (Э5) с внешними элементами искрозащиты БОИ (вариант 7)

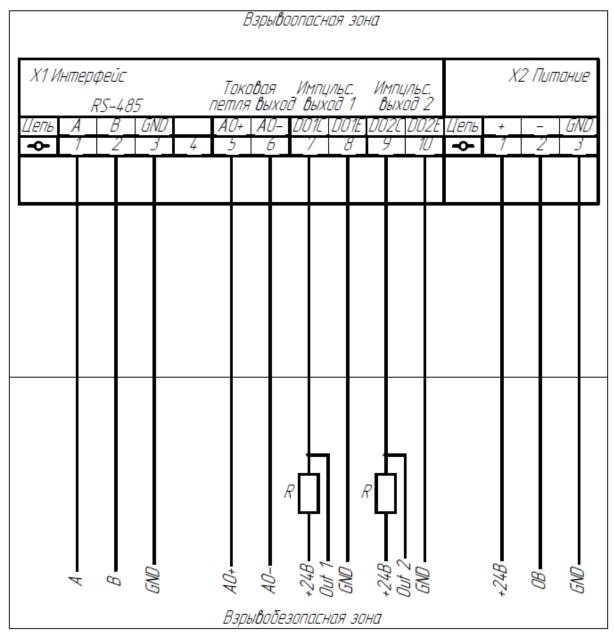

ДД – датчик давления

ДТ – датчик температуры

R = 1kOm 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одни активнию петлю

Рисунок Г.11 — Схема электрическая подключения (Э5) со встроенными барьерами искрозащиты БОИ (вариант 1)

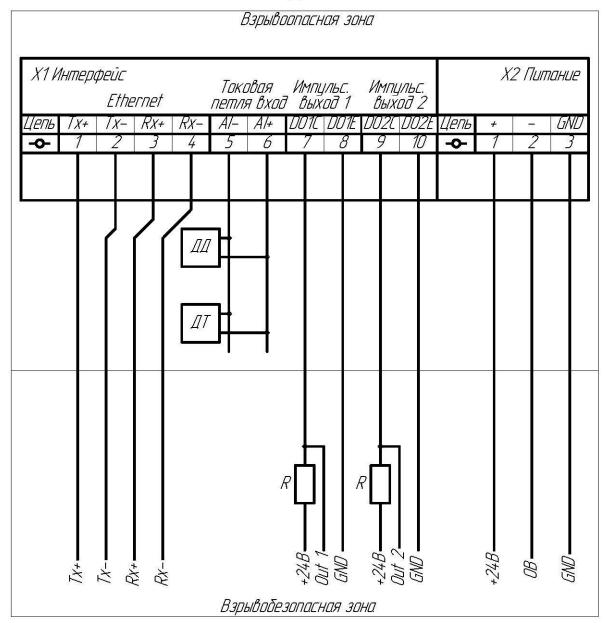

ДД – датчик давления

ДТ – датчик температуры

R = 1kOm 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одну активную петлю

Рисунок Γ .12 — Схема электрическая подключения (Э5) со встроенными барьерами искрозащиты БОИ (вариант 2)

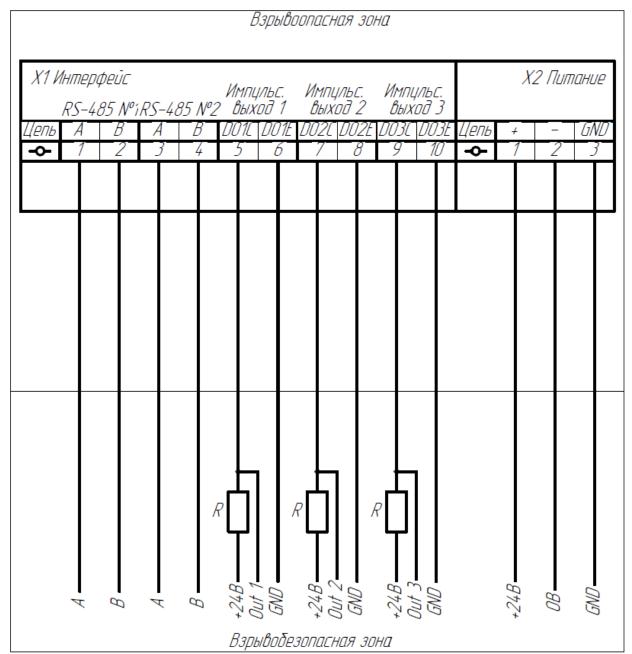

ДД – датчик давления

ДТ – датчик температуры

R = 1kOm 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одну активную петлю

Рисунок Г.13 – Схема электрическая подключения (Э5) со встроенными барьерами искрозащиты БОИ (вариант 3)


ДД – датчик давления

ДТ – датчик температуры

R = 1kOm 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одну активную петлю

Рисунок Г.14 – Схема электрическая подключения (Э5) со встроенными барьерами искрозащиты БОИ (вариант 4)

ДД – датчик давления

ДТ – датчик температуры

R = 1kOm 1 Bm npu 24B

Подключение не более 4 (четырех) датчиков на одну активную петлю

Рисунок Г.15 – Схема электрическая подключения (Э5) со встроенными барьерами искрозащиты БОИ (вариант 5)

Таблица Г.1 – Сертификаты взрывозащиты элементов БОИ

Наименование и тип взрывозащищенного оборудования, изготовитель	Ех-маркировка	Сертификаты соответствия требованиям ТР ТС 012/2011	Основные технические данные
Оболочка взрывозащищенная КТМ-1, ООО «Научно-производственное предприятие Куйбышев Телеком-Метрология»	Ex db e IIC Gb U	EAЭC RU C- RU.AЖ58.B.01527/21	Диапазон температур окружающей среды: от минус 60 °C до +85 °C; Степень защиты от внешних воздействий IP66/IP68
Краны шаровые ЭНЕРПРЕД-ЯРДОС	Ex II Gb	EAЭC RU C - RU.MЮ62.B.00636/19	Рабочее давление до 32МПа. Диапазон температур окружающей среды: от - 60 °C до +250°C;
Клеммные коробки КСРВ 141410, КСРВ 111109, ООО «ЗАВОД ГОРЭЛТЕХ»	1Ex e IIC T6T4 Gb	EAЭC RU C - RU.M.B.00157/20	Диапазон температур окружающей среды: от - 60 °C до +85 °C; степень защиты от внешних воздействий IP66/IP67/IP68/IP69
Взрывозащищённые проходные изоляторы РНК-3К-24НК, ООО «ЗАВОД ГОРЭЛТЕХ»	Ex db IIC Gb U	EA9C RU C- RU.AA87.B.00438/20	Диапазон температур окружающей среды: от - 75 °C до +150 °C; степень защиты от внешних воздействий IP66
Соединители электрические WAGO Series264	1Ex e IIC Gb U	EAЭC RU C- DE.AM02.B.00127/19	Диапазон температур окружающей среды: от - 55 °C до +110 °C
Дренажные вентиляционные устройства ДКУВ	Ex db IIC GB U	EAЭC RU C- RU.AA87.B.00438/20	Диапазон температур окружающей среды: от - $60^{\rm 0}$ С до $+150^{\rm 0}$ С
Термочехол Volterclick 95,110,150,250,450	II Ga Tx III Da Tx II Gb Tx II Db Tx	EAЭC RU C- RU.AЖ58.B.02801/22	Диапазон температур окружающей среды: от минус 70 $^{\circ}$ С до плюс 40 $^{\circ}$ С
Термочехол, шкаф с электрообогревом , теплоизоляционные чехлы серии РИЗУР	1Ex eb IIC T6T3 Gb X 1Ex eb mb IIC T6T3 Gb X 1Ex db eb IIC T6T3 Gb X 1Ex db eb mb IIC T6T3 Gb X 1Ex db eb mb IIC T6T3 Gb X 1Ex db eb IIB T6T3 Gb X IEx db eb mb IIC T6T3 Gb X II Gb IIC T6T3 X II Gb IIB T6T3 X	EAЭC RU C- RU.HB82.B00035/22	Диапазон температур окружающей среды: от минус 70 °C до плюс 85 °C

Примечание. Использование оборудования, аналогичного по эксплуатационным характеристикам, с соответствующей областью применения, характеристиками и параметрами безопасности других производителей взамен указанного в таблице 1 настоящего сертификата может быть рассмотрено ОС ЦСВЭ при наличии действующего сертификата соответствия требованиям ТР ТС 012/2011 в соответствии с п. 126 Решения Совета Евразийской экономической комиссии от 18 апреля 2018 года № 44.